

23/01/2025

Morning

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

JEE (Main)-2025 Phase-1

[Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is Mathematics. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 Numerical value based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Delivering Champions Consistently

100
PERCENTILE
RANK

JEE (Advanced) 2024

Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024

4. One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another die has one face marked 1, two faces marked 2, two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5, when both the dice are thrown together, is

(1) $\frac{2}{3}$

(2) $\frac{4}{9}$

(3) $\frac{3}{5}$

(4) $\frac{1}{2}$

Answer (4)

Sol. Die 1 : {1, 1, 2, 2, 3, 4}

Die 2 : {1, 2, 2, 3, 3, 4}

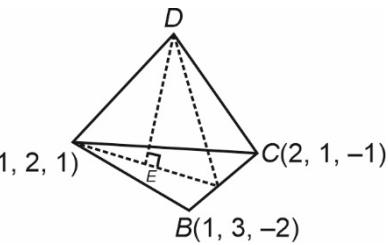
(die 1, die 2) = {(1, 3), (3, 1), (2, 2), (2, 3), (3, 2), (1, 4), (4, 1)}

$$= \frac{2}{6} \times \frac{2}{6} + \frac{1}{6} \times \frac{1}{6} + \frac{2}{6} \times \frac{2}{6} + \frac{2}{6} \times \frac{2}{6} + \frac{1}{6}$$

$$\times \frac{2}{6} + \frac{2}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{2}{6} = \frac{1}{2}$$

5. Let the position vectors of the vertices A , B and C of a tetrahedron $ABCD$ be $\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and $2\hat{i} + \hat{j} - \hat{k}$ respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point

E . If the length of AD is $\frac{\sqrt{110}}{3}$ and the volume of


the tetrahedron is $\frac{\sqrt{805}}{6\sqrt{2}}$, then the position vector of E is

(1) $\frac{1}{12}(7\hat{i} + 4\hat{j} + 3\hat{k})$ (2) $\frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k})$

(3) $\frac{1}{6}(12\hat{i} + 12\hat{j} + \hat{k})$ (4) $\frac{1}{2}(\hat{i} + 4\hat{j} + 7\hat{k})$

Answer (2)

Sol.

$$\text{Volume} = \frac{1}{3} \times \text{Base} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$$

$$\text{Base area} = \frac{1}{2} |\overline{AB} \times \overline{AC}|$$

$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -3 \\ 1 & -1 & -2 \end{vmatrix} = \frac{1}{2} |5\hat{i} + 3\hat{j} + \hat{k}| = \frac{1}{2} \sqrt{35}$$

$$\frac{1}{3} \times \frac{1}{2} \sqrt{35} \times h = \frac{\sqrt{805}}{6\sqrt{2}}$$

$$\Rightarrow h = \sqrt{\frac{23}{2}}$$

$$\text{Now } AE^2 = AD^2 - DE^2$$

$$= \frac{110}{9} - \frac{23}{2} = \frac{13}{18}$$

$$AE = \sqrt{\frac{13}{18}}$$

$$\overline{AE} = |AE| \left(\frac{\hat{i} - 5\hat{k}}{\sqrt{26}} \right) = \frac{\hat{i} - 5\hat{k}}{6}$$

$$\text{Position vector of } E = \frac{\hat{i} - 5\hat{k}}{6} + \hat{i} + 2\hat{j} + \hat{k}$$

$$= \frac{1}{6}(7\hat{i} + 12\hat{j} + \hat{k})$$

6. Let the area of a $\triangle PQR$ with vertices $P(5, 4)$, $Q(-2, 4)$ and $R(a, b)$ be 35 square units. If its orthocentre and centroid are $O\left(2, \frac{14}{5}\right)$ and $C(c, d)$ respectively, then $c + 2d$ is equal to

(1) $\frac{7}{3}$ (2) 2

(3) 3 (4) $\frac{8}{3}$

Answer (3)

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shashikiran 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Aggarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	--	---	--

JEE (Advanced) 2024

JEE (Main) 2024

 Karnataka Topper Sanvi Jain 2 Year Classroom AIR 34	 Telangana Topper M Sai Divya Teja Reddy 2 Year Classroom AIR 15	 Telangana Topper Rishi Shekher Shukla 2 Year Classroom AIR 19
--	--	--

Sol. The given system of equation are

$$(\lambda - 1)x + (\lambda - 4)y + \lambda z = 5$$

$$\lambda x + (\lambda - 1)y + (\lambda - 4)z = 7$$

$$(\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9$$

has infinite many solutions, then

$$D = D_1 = D_2 = D_3 = 0$$

$$\therefore \begin{vmatrix} \lambda - 1 & \lambda - 4 & \lambda \\ \lambda & \lambda - 1 & \lambda - 4 \\ \lambda + 1 & \lambda + 2 & -(\lambda + 2) \end{vmatrix} = 0$$

$$\text{or, } \begin{vmatrix} -1 & -3 & 4 \\ -1 & -3 & 2\lambda - 2 \\ \lambda + 1 & \lambda + 2 & -\lambda - 2 \end{vmatrix} = 0$$

$$\text{or, } \begin{vmatrix} -1 & -3 & 4 \\ 0 & 0 & 2\lambda - 6 \\ \lambda + 1 & \lambda + 2 & -\lambda - 2 \end{vmatrix} = 0$$

$$\therefore (6 - 2\lambda)(2\lambda + 1) = 0$$

$$\therefore \lambda = 3 \text{ or } -\frac{1}{2}$$

But $\lambda = 3$ satisfies all other conditions.

$$\therefore \lambda^2 + \lambda = 12$$

10. If A , B and $(\text{adj}(A^{-1}) + \text{adj}(B^{-1}))$ are non-singular matrices of same order, then the inverse of $A(\text{adj}(A^{-1}) + \text{adj}(B^{-1}))^{-1}B$, is equal to

$$(1) \text{adj}(B^{-1}) + \text{adj}(A^{-1})$$

$$(2) \frac{1}{|AB|}(\text{adj}(B) + \text{adj}(A))$$

$$(3) AB^{-1} + A^{-1}B$$

$$(4) \frac{AB^{-1}}{|A|} + \frac{BA^{-1}}{|B|}$$

Answer (2)

$$\text{Sol. } [A(\text{adj}(A^{-1}) + \text{adj}(B^{-1}))^{-1}B]^{-1}$$

$$= B^{-1}(\text{adj}(A^{-1}) + \text{adj}(B^{-1}))A^{-1}$$

$$= B^{-1} \left[\frac{A}{|A|} + \frac{B}{|B|} \right] A^{-1}$$

$$= \left[\frac{B^{-1}A}{|A|} + \frac{I}{|B|} \right] A^{-1}$$

$$= \frac{B^{-1}}{|A|} + \frac{A^{-1}}{|B|}$$

$$= \frac{\text{adj}(B)}{|AB|} + \frac{\text{adj}(A)}{|AB|}$$

$$= \frac{1}{|AB|}(\text{adj}(B) + \text{adj}(A))$$

11. If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to

$$(1) -1080 \quad (2) -1200$$

$$(3) -120 \quad (4) -1020$$

Answer (1)

Sol. Sum of first 4 terms

$$= \frac{1}{5} \times (\text{sum of next 4 terms})$$

$$\frac{4}{2}(2a + 3d) = \frac{1}{5}(4a + 22d)$$

$$\Rightarrow 16a = -8d \Rightarrow a = -\frac{d}{2}$$

$$a = 3, d = -6$$

$$S_{20} = \frac{20}{2}[2(3) + 19(-6)]$$

$$= -10(18.6)$$

$$= -1080$$

12. Let the arc AC of a circle subtend a right angle at the centre O . If the point B on the arc AC , divides the arc

AC such that $\frac{\text{length of arc } AB}{\text{length of arc } BC} = \frac{1}{5}$, and \overline{OC}

$$= \alpha \overline{OA} + \beta \overline{OB}, \text{ then } \alpha + \sqrt{2}(\sqrt{3} - 1)\beta \text{ is equal to}$$

$$(1) 5\sqrt{3} \quad (2) 2 + \sqrt{3}$$

$$(3) 2\sqrt{3} \quad (4) 2 - \sqrt{3}$$

Answer (4)

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shashikiran
2 Year Classroom

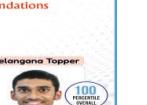
AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
2 Year Classroom

JEE (Advanced) 2024


JEE (Main) 2024

Karnataka Topper
AIR 1
Sanvi Jain
2 Year Classroom

Telangana Topper
AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

Telangana Topper
AIR 19
Rishi Shekher Shukla
2 Year Classroom

100 PERCENT ENTRANCE PASS

Sol. Let the radius be r

B divides the arc in $1 : 5$, so AB would subtend an angle of 15° at origin O and similarly, BC would subtend an angle of 75° at origin.

$$\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{b}, \overrightarrow{OC} = \vec{c}$$

$$\vec{b} = r(\cos 75^\circ)\hat{i} + r(\sin 75^\circ)\hat{j}$$

$$\vec{b} = \left(\frac{\sqrt{3}-1}{2\sqrt{2}} \right) \vec{c} + \left(\frac{\sqrt{3}+1}{2\sqrt{2}} \right) \vec{a}$$

$$\overrightarrow{OC} = -\frac{(\sqrt{3}+1)}{|\sqrt{3}-1|} \overrightarrow{OA} + \frac{2\sqrt{2}}{|\sqrt{3}-1|} \overrightarrow{OB}$$

$$\alpha + \sqrt{2}(\sqrt{3}-1)\beta = 2 - \sqrt{3}$$

13. If the line $3x - 2y + 12 = 0$ intersects the parabola $4y = 3x^2$ at the points A and B , then at the vertex of the parabola, the line segment AB subtends an angle equal to

$$(1) \tan^{-1}\left(\frac{9}{7}\right)$$

$$(2) \tan^{-1}\left(\frac{11}{9}\right)$$

$$(3) \frac{\pi}{2} - \tan^{-1}\left(\frac{3}{2}\right)$$

$$(4) \tan^{-1}\left(\frac{4}{5}\right)$$

Answer (1)

Sol. Line $L : 3x - 2y + 12 = 0$

Parabola $P : 4y = 3x^2$

By putting $y = \frac{3x^2}{4}$ in equation of line

$$\text{We get, } 3x - 2\left(\frac{3x^2}{4}\right) + 12 = 0$$

$$\Rightarrow 6x - 3x^2 + 24 = 0$$

$$\Rightarrow x^2 - 2x + 8 = 0$$

$$\Rightarrow x = 4, -2$$

for $x = 4$, we get $y = 12$

for $x = -2$, we get $y = 3$

So, points A and B are $(4, 12)$ and $(-2, 3)$

Now, Vertex of parabola is $(0, 0)$

$$\Rightarrow \tan \theta = \frac{3 - \left(\frac{-3}{2}\right)}{1 + 3\left(\frac{-3}{2}\right)}$$

$$\tan \theta = \frac{9}{7}$$

$$\Rightarrow \theta = \tan^{-1}\left(\frac{9}{7}\right)$$

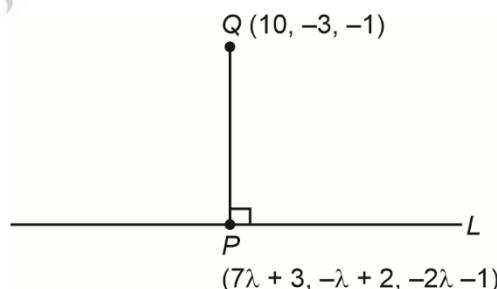
\Rightarrow Option (1) is correct

14. Let P be the foot of the perpendicular from the point $Q(10, -3, -1)$ on the line $\frac{x-3}{7} = \frac{y-2}{-1} = \frac{z+1}{-2}$. Then the area of the right-angled triangle PQR , where R is the point $(3, -2, 1)$, is

$$(1) 3\sqrt{30}$$

$$(2) 9\sqrt{15}$$

$$(3) 8\sqrt{15}$$


$$(4) \sqrt{30}$$

Answer (1)

Sol. $Q(10, -3, -1)$

$$L : \frac{x-3}{7} = \frac{y-2}{-1} = \frac{z+1}{-2}$$

General point on $L(7\lambda + 3, -\lambda + 2, -2\lambda - 1)$

$$(7\lambda + 3, -\lambda + 2, -2\lambda - 1)$$

DR's of PQ are $7\lambda - 7, -\lambda + 5, -2\lambda$

$$PQ \perp L$$

$$\Rightarrow (7\lambda - 7)7 + (-1)(-\lambda + 5) + (-2\lambda)(-2) = 0$$

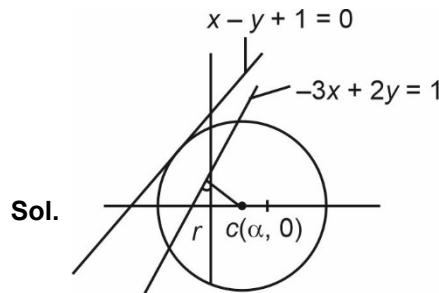
$$\Rightarrow 49\lambda - 49 + \lambda - 5 + 4\lambda = 0$$

 Delivering Champions Consistently

JEE (Advanced) 2024

 Aakash
Medical IIT-JEE | Foundations

JEE (Main) 2024



SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Let the circle C touch the line $x - y + 1 = 0$, have the centre on the positive x -axis, and cut off a chord of length $\frac{4}{\sqrt{13}}$ along the line $-3x + 2y = 1$. Let H be the hyperbola $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, whose one of the foci is the centre of C and the length of the transverse axis is the diameter of C . Then $2\alpha^2 + 3\beta^2$ is equal to _____.

Answer (19)

$$r = \frac{|a+1|}{\sqrt{2}} \Rightarrow (a+1)^2 = 2r^2$$

$$\text{Also } \left(\frac{3a-1}{\sqrt{13}}\right)^2 + \left(\frac{2}{\sqrt{13}}\right)^2 = r^2$$

$$\Rightarrow \left(\frac{3a-1}{\sqrt{13}}\right)^2 + \frac{4}{13} = \frac{(a+1)^2}{2}$$

$$5a^2 - 14a - 3 = 0$$

$$\therefore a = -\frac{1}{5}, 3$$

$$\because a \neq -\frac{1}{5} \Rightarrow a = 3$$

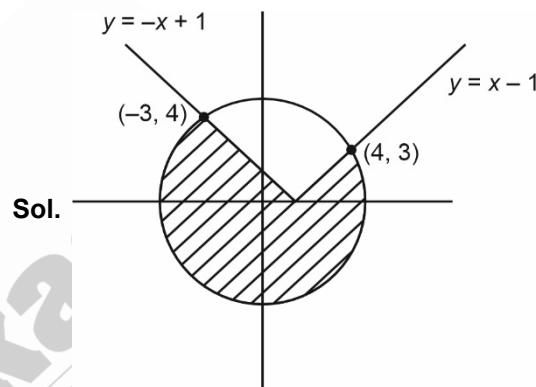
$$\Rightarrow r = 2\sqrt{2}$$

\therefore One focus of $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ is $(3, 0)$

$$\Rightarrow \alpha e = 3 \text{ and } 2\alpha = 4\sqrt{2}$$

$$\Rightarrow \alpha = 2\sqrt{2} \Rightarrow \alpha^2 = 8$$

$$\alpha^2 \left[1 + \frac{\beta^2}{\alpha^2} \right] = 9$$


$$\alpha^2 + \beta^2 = 9$$

$$\Rightarrow \beta^2 = 1$$

$$\therefore 2\alpha^2 + 3\beta^2 = 19$$

22. If the area of the larger portion bounded between the curves $x^2 + y^2 = 25$ and $y = |x - 1|$ is $\frac{1}{4}(b\pi + c)$, $b, c \in \mathbb{N}$, then $b + c$ is equal to _____.

Answer (77)

Area of shaded region

$$= 25\pi - \left[\int_{-3}^4 \left(\sqrt{25 - x^2} - |x - 1| \right) dx \right]$$

$$= 25\pi - \left[\frac{1}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \frac{x}{5} \right]_{-3}^4 + \left(8 + \frac{9}{2} \right)$$

$$= \frac{1}{4} [75\pi + 2]$$

$$\Rightarrow b = 75, c = 2$$

$$\therefore b + c = 77$$

 Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla
2 Year Classroom

AIR 67 Krishna Sai Shashikiran
2 Year Classroom

JEE (Advanced) 2024

AIR 78 Abhishek Jain
2 Year Classroom

AIR 93 Hardik Agarwal
2 Year Classroom

AIR 95 Ujjwal Singh
2 Year Classroom

AIR 98 Rachit Aggarwal
2 Year Classroom

JEE (Main) 2024

AIR 15 Sanvi Jain
2 Year Classroom

AIR 10 M Sai Divya Teja Reddy
2 Year Classroom

Telangana Topper
AIR 10

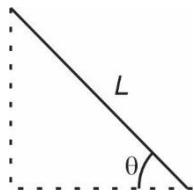
Telangana Topper
AIR 10

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :


26. A solid sphere of mass 'm' and radius 'r' is allowed to roll without slipping from the highest point of an inclined plane of length 'L' and makes an angle 30° with the horizontal. The speed of the particle at the bottom of the plane is v_1 . If the angle of inclination is increased to 45° while keeping L constant. Then the new speed of the sphere at the bottom of the plane is v_2 . The ratio $v_1^2 : v_2^2$ is

- (1) 1 : 3
- (2) 1 : $\sqrt{2}$
- (3) 1 : 2
- (4) 1 : $\sqrt{3}$

Answer (2)

Sol. Loss in P.E. = gain in K.E.

$$mgL \sin \theta = \frac{1}{2} \left(\frac{7}{5} \right) mv^2$$

$$\Rightarrow v^2 \propto \sin \theta$$

$$\frac{v_1^2}{v_2^2} = \frac{\sin 30^\circ}{\sin 45^\circ} = \frac{1}{\sqrt{2}}$$

27. A gun fires a lead bullet of temperature 300 K into a wooden block. The bullet having melting temperature of 600 K penetrates into the block and melts down. If the total heat required for the process is 625 J, then the mass of the bullet is _____ grams.

(Latent heat of fusion of lead = $2.5 \times 10^4 \text{ JKg}^{-1}$ and specific heat capacity of lead $125 \text{ JKg}^{-1} \text{ K}^{-1}$)

- (1) 20
- (2) 5
- (3) 10
- (4) 15

Answer (3)

Sol. $Q = ms\Delta T + mL$

$$625 = m \times 125 \times 300 + m \times 2.5 \times 10^4$$

$$625 = m \{3.75 + 2.5\} \times 10^4$$

$$\Rightarrow \frac{625}{6.25} \times 10^{-4} \text{ kg} = 10 \text{ g} = m$$

28. A radioactive nucleus n_2 has 3 times the decay constant as compared to the decay constant of another radioactive nucleus n_1 . If initial number of both nuclei are the same, what is the ratio of number of nuclei of n_2 to the number of nuclei of n_1 , after one half-life of n_1 ?

- (1) 1/8
- (2) 1/4
- (3) 4
- (4) 8

Answer (2)

Sol. $\lambda_2 = 3\lambda$ $\lambda_1 = \lambda$

$$N = N_0 e^{-\lambda t}$$

$$N_1 = N_0 e^{-\lambda t}$$

$$N_2 = N_0 e^{-3\lambda t}$$

$$\frac{N_2}{N_1} = e^{-2\lambda t}$$

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

$$\text{for } t = \frac{\ln 2}{\lambda}$$

$$\Rightarrow \frac{N_2}{N_1} = e^{-2\lambda \frac{\ln 2}{\lambda}}$$

$$\frac{N_2}{N_1} = \frac{1}{4}$$

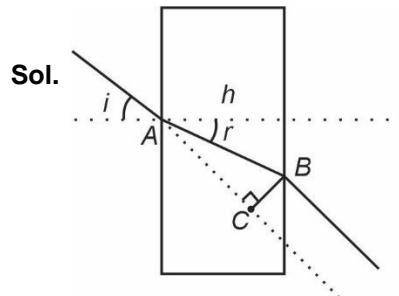
29. The electric flux is $\phi = \alpha\sigma + \beta\lambda$

Where λ and σ are linear and surface charge density, respectively. $\left(\frac{\alpha}{\beta}\right)$ represents

(1) Area (2) Displacement
(3) Electric field (4) Charge

Answer (2)

Sol. $\alpha = \frac{\phi}{\sigma}$


$$\beta = \frac{\phi}{\lambda}$$

$$\frac{\alpha}{\beta} = \frac{\lambda}{\sigma} \equiv \text{displacement}$$

30. What is the lateral shift of a ray refracted through a parallel-sided glass slab of thickness 'h' in terms of the angle of incidence 'i' and angle refraction 'r', if the glass slab is placed in air medium?

(1) h (2) $\frac{h\sin(i-r)}{\cos r}$
(3) $\frac{htan(i-r)}{\tan r}$ (4) $\frac{h\cos(i-r)}{\sin r}$

Answer (2)

$$AB = h \sec r$$

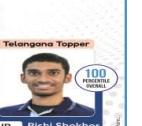
$$BC = h \sec r \sin(i-r)$$

$$BC = \frac{h \sin(i-r)}{\cos r}$$

31. Match the List-I with List-II

List-I		List-II	
A.	Pressure varies inversely with volume of an ideal gas.	I.	Adiabatic process
B.	Heat absorbed goes partly to increase internal energy and partly to do work.	II.	Isochoric process
C.	Heat is neither absorbed nor released by a system.	III.	Isothermal process
D.	No work is done on or by a gas.	IV.	Isobaric process

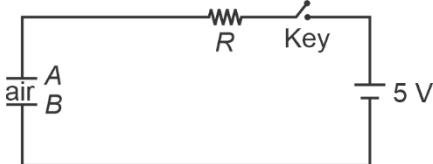
Choose the correct answer from the options given below:


(1) A-III, B-I, C-IV, D-II (2) A-I, B-IV, C-II, D-III
(3) A-III, B-IV, C-I, D-II (4) A-I, B-III, C-II, D-IV

Answer (3)

Sol. $PV = \mu RT$

(A) $P \propto \frac{1}{V} \Rightarrow$ isothermal
(B) $\Delta Q = \Delta V + W \Rightarrow$ isobaric
(C) $\Delta Q = 0 \Rightarrow$ adiabatic
(D) $W = 0 \Rightarrow$ isochoric


Delivering Champions Consistently

JEE (Advanced) 2024					
 AIR 25	 AIR 67	 AIR 78	 AIR 93	 AIR 95	 AIR 98
JEE (Main) 2024					
 AIR 24	 AIR 15	 AIR 19			

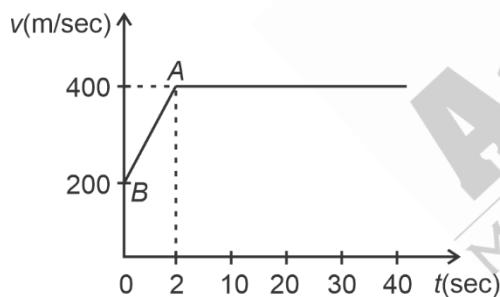
Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024		
 Karnataka Topper	 Telangana Topper	 Telangana Topper

32. Identify the valid statements relevant to the given circuit at the instant when the key is closed.

- A. There will be no current through resistor R .
- B. There will be maximum current in the connecting wires.
- C. Potential difference between the capacitor plates A and B is minimum.
- D. Charge on the capacitor plates is minimum.

Choose the correct answer from the options given below:


(1) C, D only (2) A, B, D only
(3) A, C only (4) B, C, D only

Answer (4)

Sol. Capacitor behaves like closed circuit at $t = 0$ and charge is zero.

A X, B ✓, C ✓, D ✓

33. The motion of an airplane is represented by velocity-time graph as shown below. The distance covered by airplane in the first 30.5 second is km.

Answer (1)

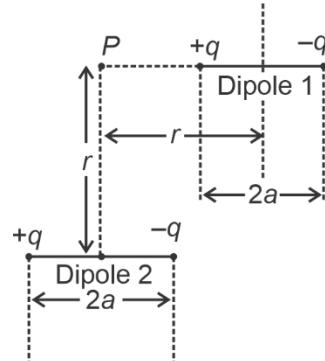
Sol. Distance = area under the graph

$$\begin{aligned}
 d &= 300 \times 2 + 400 \times 28.5 \\
 &= 600 + 114000 \\
 &= 120000 \text{ m}
 \end{aligned}$$

34. Given below are two statements:

Statement I: The hot water flows faster than cold water.

Statement II: Soap water has higher surface tension as compared to fresh water.

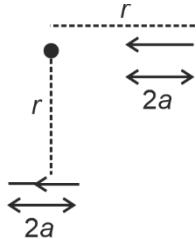

In the light of above statements, choose the **correct** answer from the options given below

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false

Answer (4)

Sol. Hot water flows faster because of less viscosity (✓) and soap water has less surface tension because bubbles are easily formed (X)

35. A point particle of charge Q is located at P along the axis of an electric dipole 1 at a distance r as shown in the figure. The point P is also on the equatorial plane of a second electric dipole 2 at a distance r . The dipoles are made of opposite charge q separated by a distance $2a$. For the charge particle at P not to experience any net force, which of the following correctly describes the situation?



(1) $\frac{a}{r} \sim 3$ (2) $\frac{a}{r} \sim 0.5$
 (3) $\frac{a}{r} \sim 10$ (4) $\frac{a}{r} \sim 20$

Answer (1)

Delivering Champions Consistently

Sol. $E_1 = E_2$, taking $kq = 1$

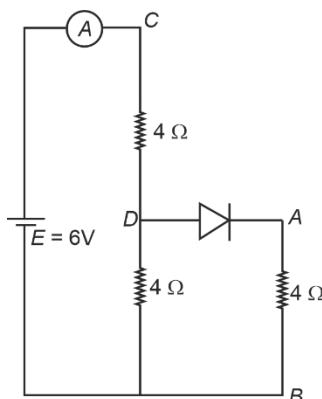
$$\Rightarrow \frac{1}{(r-a)^2} - \frac{1}{(r+a)^2} = \frac{2a}{(a^2 + r^2)^{3/2}}$$

$$\frac{4ar}{(r^2 - a^2)^2} = \frac{2a}{(a^2 + r^2)^{3/2}}$$

$$(r^2 - a^2)^2 = 2r(a^2 + r^2)^{3/2}$$

$$\left(1 - \frac{a^2}{r^2}\right)^2 = 2\left(1 + \frac{a^2}{r^2}\right)^{3/2}$$

$$\left(1 - \frac{a^2}{r^2}\right)^2 = 2\left(1 + \frac{a^2}{r^2}\right)^{3/2} \quad \left(x = \frac{a}{r}\right)$$


$$\frac{\left(1 - \frac{a^2}{r^2}\right)^2}{\left(1 + \frac{a^2}{r^2}\right)^{3/2}} = 2$$

Now for $x = 3$

$$\text{We get } \frac{64}{10\sqrt{10}} \approx 2 \Rightarrow \frac{a}{r} \approx 3$$

[But for $a > r$ point charge will be between the dipole where $\vec{E} \neq 0$]

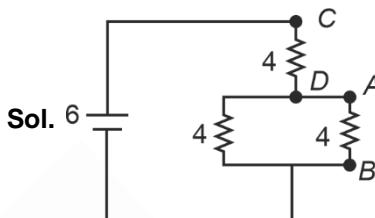
36. Refer to the circuit diagram given in the figure. Which of the following observations are correct?

A. Total resistance of circuit is 6Ω

B. Current in Ammeter is 1 A

C. Potential across AB is 4 volts.

D. Potential across CD is 4 volts


E. Total resistance of the circuit is 8Ω .

Choose the correct answer from the options given below:

(1) A, B and D Only (2) B, C and E Only

(3) A, B and C Only (4) A, C and D Only

Answer (1)

$$R_{\text{eq}} (4 \uparrow\uparrow 4) + 4 = 6 \Omega$$

$$i = \frac{6}{6} \text{ A}$$

$$V_{CD} = 1 \times 4 = 4 \text{ V} \Rightarrow V_{AB} = 2 \text{ V}$$

(A, B, D)

37. Given a thin convex lens (refractive index μ_2), kept in a liquid (refractive index μ_1 , $\mu_1 < \mu_2$) having radii of curvatures $|R_1|$ and $|R_2|$. Its second surface is silver polished. Where should an object be placed on the optic axis so that a real and inverted image is formed at the same place?

$$(1) \frac{(\mu_2 + \mu_1)|R_1|}{(\mu_2 - \mu_1)}$$

$$(2) \frac{\mu_1|R_1| \cdot |R_2|}{\mu_2(|R_1| + |R_2|) - \mu_1|R_1|}$$

$$(3) \frac{\mu_1|R_1| \cdot |R_2|}{\mu_2(|R_1| + |R_2|) - \mu_1|R_2|}$$

$$(4) \frac{\mu_1|R_1| \cdot |R_2|}{\mu_2(2|R_1| + |R_2|) - \mu_1\sqrt{|R_1| \cdot |R_2|}}$$

Delivering Champions Consistently

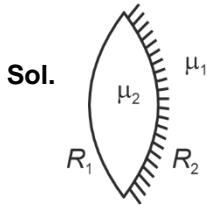
JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024


JEE (Advanced) 2024

Aakash
Medical IIT-JEE | Foundations

JEE (Main) 2024

Answer (3)

Sol.

$$\frac{1}{f_l} = \left(\frac{\mu_2 - 1}{\mu_1} \right) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$f_m = -\frac{R_2}{2}$$

$$p_{eq} = 2p_l + pm$$

$$\frac{1}{|f|} = \frac{2(\mu_2 - \mu_1)}{\mu_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) + \frac{2}{R_2}$$

$$= \frac{2(\mu_2 - \mu_1)(R_1 + R_2)}{\mu_1(R_1 R_2)} + \frac{2}{R_2}$$

$$\frac{1}{f} = \frac{2\mu_2 R_1 + 2\mu_2 R_2 - 2\mu_1 R_1 - 2\mu_1 R_2 + 2}{\mu_1 R_1 R_2}$$

$$\Rightarrow f = \frac{\mu_1 R_1 R_2}{2\mu_2 R_1 + 2\mu_2 R_2 - 2\mu_1 R_1 - 2\mu_1 R_2}$$

Required distance = 2f.

38. A sub-atomic particle of mass 10^{-30} kg is moving with a velocity 2.21×10^6 m/s. Under the matter wave consideration, the particle will behave closely like _____.

$$(h = 6.63 \times 10^{-34} \text{ J.s})$$

(1) Gamma rays (2) X-rays
 (3) Visible radiation (4) Infra-red radiation

Answer (2)

$$\text{Sol. } \lambda = \frac{6.63 \times 10^{-34}}{10^{-30} \times 2.21 \times 10^6}$$

$$\lambda = 3 \times 10^{-10}$$

$$\lambda = 3 \text{ \AA}$$

$$\Rightarrow \text{X Ray}$$

39. Regarding self-inductance:

- The self-inductance of the coil depends on its geometry.
- Self-inductance does not depend on the permeability of the medium.
- Self-induced e.m.f. opposes any change in the current in a circuit.
- Self-inductance is electromagnetic analogue of mass in mechanics.
- Work needs to be done against self-induced e.m.f. in establishing the current.

Choose the correct answer from the options given below:

(1) A, C, D, E only (2) A, B, C, E only
 (3) A, B, C, D only (4) B, C, D, E only

Answer (1)

Sol. (A) $L = \mu_r \mu_0 n^2 A l$ ✓

(B) $L = \mu_r \mu_0 n^2 A l$ X

(C) ✓

(D) ✓

(E) ✓

40. Consider a moving coil galvanometer (MCG):

- The torsional constant in moving coil galvanometer has dimensions $[ML^2 T^{-2}]$
- Increasing the current sensitivity may not necessarily increase the voltage sensitivity.
- If we increase number of turns (N) to its double ($2N$), then the voltage sensitivity doubles.
- MCG can be converted into an ammeter by introducing a shunt resistance of large value in parallel with galvanometer.
- Current sensitivity of MCG depends inversely on number of turns of coil.

Choose the correct answer from the options given below:

(1) A, D Only (2) A, B Only
 (3) B, D, E Only (4) A, B, E Only

 Delivering Champions Consistently

 AIR 25	 AIR 67	 AIR 78	 AIR 93	 AIR 95	 AIR 98
JEE (Advanced) 2024					

 Aakash
Medical IIT-JEE Foundations

 Karnataka Topper	 Telangana Topper	 Telangana Topper
 AIR 24	 AIR 15	 AIR 19
JEE (Main) 2024		

Answer (2)
Sol. (A) $\tau = C\theta$

$$C \equiv ML^2T^{-2} \checkmark$$

(B) $C\theta = iANB$

$$\frac{\theta}{i} = \frac{ANB}{C} \text{ here } N \uparrow, \frac{\theta}{i} \uparrow$$

$$\frac{\theta}{v} = \frac{ANB}{CR} \text{ here } \frac{N}{R} \text{ cannot increase}$$

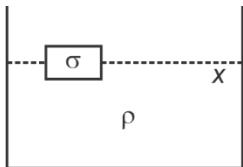
 \checkmark

(C) X; Theoretical

(D) Shunt of law of resistance X

(E) X; explained in [B]

41. A light hollow cube of side length 10 cm and mass 10 g, is floating in water. It is pushed down and released to execute simple harmonic oscillations. The time period of oscillations is $y\pi \times 10^{-2}$ s, where the value of y is


(Acceleration due to gravity, $g = 10 \text{ m/s}^2$, density of water = 10^3 kg/m^3)

(1) 2

(2) 6

(3) 4

(4) 1

Answer (1)
Sol. Additional buoyant force

$$g\rho a^2 x = \sigma a^3 A$$

$$A = \frac{\rho}{\sigma} \frac{g}{a} x$$

$$T = 2\pi \sqrt{\frac{\sigma a}{\rho g}}$$

$$\text{Now, } \sigma = \frac{10 \times 10^{-3}}{10^{-3}} = 10$$

$$\Rightarrow T = 2\pi \sqrt{\frac{10 \times 0.1}{10^3 \times 10}} \\ = 2\pi \times 10^{-2}$$

42. The position of a particle moving on x-axis is given by $x(t) = Asint + B\cos^2t + C\ell^2 + D$, where t is time.

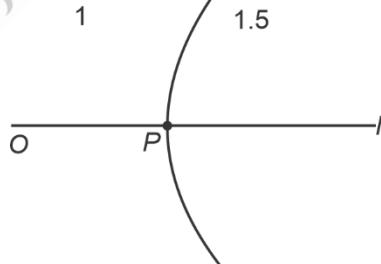
The dimension of $\frac{ABC}{D}$ is

(1) $L^2 T^{-2}$

(2) $L^3 T^{-2}$

(3) L

(4) L^2
Answer (1)
Sol. $A \equiv L$
 $B \equiv L$
 $C \equiv LT^{-2}$
 $D \equiv L$


$$\Rightarrow \frac{ABC}{D} = \frac{L \times L \times LT^2}{L} = L^2 T^{-2}$$

43. A spherical surface of radius of curvature R , separates air from glass (refractive index = 1.5). The centre of curvature is in the glass medium. A point object 'O' placed in air on the optic axis of the surface, so that its real image is formed at 'I' inside glass. The line OI intersects the spherical surface at P and $PO = PI$. The distance PO equals to

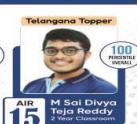
(1) $3R$

(2) $2R$

(3) $1.5R$

(4) $5R$
Answer (4)
Sol.

$$PO = PI$$

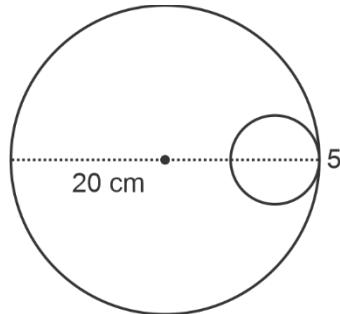

$$\frac{1.5}{x} - \frac{1}{-x} = \frac{0.5}{R}$$

$$\frac{2.5}{x} = \frac{0.5}{R}$$

$$x = 5R$$

 Delivering Champions Consistently

JEE (Advanced) 2024


JEE (Main) 2024

44. Consider a circular disc of radius 20 cm with centre located at the origin. A circular hole of radius 5 cm is cut from this disc in such a way that the edge of the hole touches the edge of the disc. The distance of centre of mass of residual or remaining disc from the origin will be

(1) 1.5 cm (2) 0.5 cm
(3) 1.0 cm (4) 2.0 cm

Answer (3)

Sol.

$$M \propto A$$

$$x_{cm} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$= \frac{A(0) + \left(-\frac{A}{16}\right)(15)}{A - \frac{A}{16}}$$

$$= \frac{-15}{16-1} = -1 \text{ cm}$$

45. The electric field of an electromagnetic wave in free space is

$$\vec{E} = 57 \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)]$$

$(4\hat{i} - 3\hat{j}) \text{ N/C}$. The associated magnetic field in Tesla is

(1) $\vec{B} = -\frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](\hat{k})$

(2) $\vec{B} = \frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](5\hat{k})$

(3) $\vec{B} = -\frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](5\hat{k})$

(4) $\vec{B} = \frac{57}{3 \times 10^8} \cos[7.5 \times 10^6 t - 5 \times 10^{-3} (3x + 4y)](\hat{k})$

Answer (2)

Sol. $E = CB$

and $\vec{E} \times \vec{B} \uparrow \uparrow \vec{C}$

$$B = \frac{57 \times 5}{3 \times 10^8}$$

$3\hat{i} + 4\hat{j}$ is direction of propagation

As, $\vec{E} \times \vec{B} \uparrow \uparrow 3\hat{i} + 4\hat{j}$

$$\Rightarrow (4\hat{i} - 3\hat{j}) \times (-\hat{k}) = 4\hat{j} + 3\hat{i}$$

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

46. A positive ion A and a negative ion B has charges $6.67 \times 10^{-19} \text{ C}$ and $9.6 \times 10^{-10} \text{ C}$, and masses $19.2 \times 10^{-27} \text{ kg}$ and $9 \times 10^{-27} \text{ kg}$ respectively. At an instant, the ions are separated by a certain distance r . At that instant the ratio of the magnitudes of electrostatic force to gravitational force is $P \times 10^{-23}$, where the value of P is _____.

(Take $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2\text{C}^{-1}$ and universal gravitational constant as $6.67 \times 10^{-11} \text{ Nm}^2\text{kg}^{-2}$)

Answer (None)

$$F_e = \frac{k q_1 q_2}{r^2}$$

$$F_g = \frac{G m_1 m_2}{r^2}$$

$$\frac{F_e}{F_g} = \frac{k q_1 q_2}{G m_1 m_2}$$

$$= \frac{9 \times 10^9 \times 6.67 \times 10^{-19} \times 9.6 \times 10^{-10}}{6.67 \times 10^{-11} \times 19.2 \times 10^{-27} \times 9 \times 10^{-27}}$$

$$= \frac{10^{-20}}{2 \times 10^{-65}}$$

*Answer does not match with description.

Delivering Champions Consistently

 AIR 25	 AIR 67	 AIR 78	 AIR 93	 AIR 95	 AIR 98
JEE (Advanced) 2024					

JEE (Main) 2024

 Karnataka Topper	 Telangana Topper	 Telangana Topper
 AIR 24	 AIR 15	 AIR 19
100 PERCENTILE RANK		

47. An ideal gas initially at 0°C temperature, is compressed suddenly to one fourth of its volume. If the ratio of specific heat at constant pressure to that at constant volume is $3/2$, the change in temperature due to the thermodynamic process is _____ K.

Answer (273)

Sol. $TV^{\gamma-1} = \text{constant}$

$$273 \times V^{0.5} = T \left(\frac{V}{4} \right)^{0.5}$$

$$T = 546$$

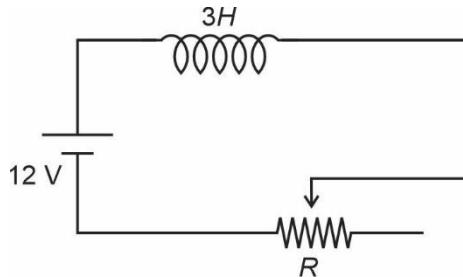
$$\Delta T = 273 \text{ K}$$

48. A force $f = x^2 \hat{i} + y^2 \hat{j}$ acts on a particle in a plane $x + y = 10$. The work done by this force during a displacement from $(0, 0)$ to $(4\text{m}, 2\text{m})$ _____ Joule (round off to the nearest integer)

Answer (152)

Sol. $y = 10 - x$

$$w = \int_0^4 x^2(10-x)dx + \int_0^2 y^2 dy$$


$$= \frac{10x^3}{3} - \frac{x^4}{4} \Big|_0^4 + \frac{y^3}{3} \Big|_0^2$$

$$= \frac{640}{3} - \frac{256}{4} + \frac{8}{3}$$

$$= 216 \times 64$$

$$= 152 \text{ J}$$

49.

In the given circuit the sliding contact is pulled outwards such that electric current in the circuit changes at the rate of 8 A/s . At an instant when R is 12Ω , the value of the current in the circuit will be _____ A.

Answer (1)

Sol. $\varepsilon - \frac{Ldi}{dt} = iR = 0$

$$12 - 3 \times 8 - i12 = 0$$

$$12 = i12$$

$$i = 1$$

50. Two particles are located at equal distance from origin. The position vectors of those are represented by $\vec{A} = 2\hat{i} + 3n\hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} - 2\hat{j} + 4p\hat{k}$, respectively. If both the vectors are at right angle to each other, the value of n^{-1} is _____.

Answer (3)

Sol. $\vec{A} \cdot \vec{B} = 0$ and $|\vec{A}| = |\vec{B}|$

$$\Rightarrow 4 - 6n + 8p = 0$$

$$3n - 4p = 2 \quad \dots(\text{i})$$

$$\text{Also } 4 + 9n^2 + 4 = 4 + 4 + 16p^2$$

$$3n = \pm 4p \quad \dots(\text{ii})$$

Taking $-ve$ sign

$$-8p = 2$$

$$p = -\frac{1}{4}$$

$$3n + 1 = 2$$

$$n = \frac{1}{3}$$

Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

51. 2.8×10^{-3} mol of CO_2 is left after removing 10^{21} molecules from its 'x' mg sample. The mass of CO_2 taken initially is

Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

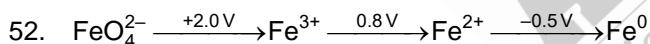
(1) 98.3 mg (2) 48.2 mg
(3) 150.4 mg (4) 196.2 mg

Answer (4)

Sol. Moles of removed $\text{CO}_2 = \frac{10^{21}}{6.02 \times 10^{23}} \text{ mol}$
 $= 1.66 \times 10^{-3} \text{ mol}$

mole of CO_2 left = 2.8×10^{-3} moles

total moles of CO_2 taken initially

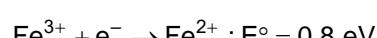
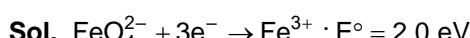

$$= (2.8 + 1.66) \times 10^{-3} \text{ mol}$$

mass of CO_2 taken initially

$$= 4.46 \times 10^{-3} \times 44$$

$$= 196.24 \times 10^{-3} \text{ g}$$

$$= 196.24 \text{ mg}$$

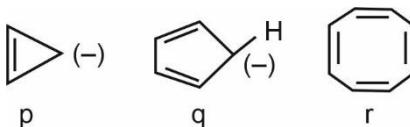



In the above diagram, the standard electrode potentials are given in volts (over the arrow).

The value of $E^\ominus_{\text{FeO}_4^{2-}/\text{Fe}^{2+}}$ is

(1) 1.7 V (2) 2.1 V
(3) 1.4 V (4) 1.2 V

Answer (1)



$$4 \times x = 3 \times 2 + 1 \times 0.8$$

$$x = \frac{6.8}{4} \text{ V}$$

$$= 1.7 \text{ V}$$

53. The correct stability order of the following species/molecules is

(1) $q > p > r$ (2) $q > r > p$
(3) $r > q > p$ (4) $p > q > r$

Answer (2)

Sol. q is aromatic

r is non-aromatic

p is antiaromatic

$q > r > p$ (order of stability)

Aromatic > non-aromatic > antiaromatic

54. Ice at -5°C is heated to become vapour with temperature of 110°C at atmospheric pressure. The entropy change associated with this process can be obtained from

$$(1) \int_{268K}^{273K} C_p \, dT + \frac{\Delta H_{m, \text{fusion}}}{T_f} + \frac{\Delta H_{m, \text{vaporisation}}}{T_b} + \int_{273K}^{373K} C_p \, dT + \int_{373K}^{383K} C_p \, dT$$

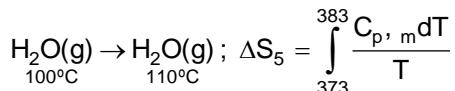
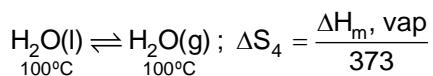
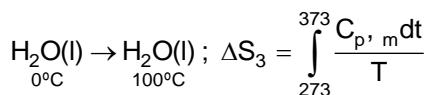
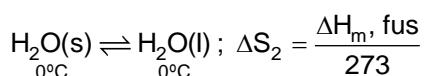
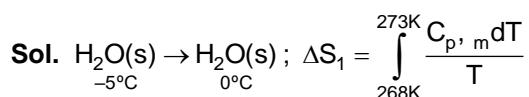
$$(2) \int_{268K}^{383K} C_p \, dT + \frac{\Delta H_{\text{melting}}}{273} + \frac{\Delta H_{\text{boiling}}}{373}$$

$$(3) \int_{268K}^{273K} \frac{C_p \, dT}{T} + \frac{\Delta H_{m, \text{fusion}}}{T_f} + \frac{\Delta H_{m, \text{vaporisation}}}{T_b} + \int_{273K}^{373K} \frac{C_p \, dT}{T} + \int_{373K}^{383K} \frac{C_p \, dT}{T}$$

$$(4) \int_{268K}^{383K} C_p \, dT + \frac{q_{\text{rev}}}{T}$$

Answer (3)

Delivering Champions Consistently






JEE (Advanced) 2024

Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024

$$\Delta S_{\text{total}} = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4 + \Delta S_5$$

55. Heat treatment of muscular pain involves radiation of wavelength of about 900 nm. Which spectral line of H atom is suitable for this?

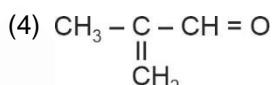
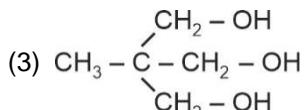
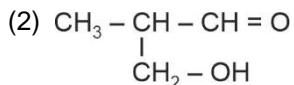
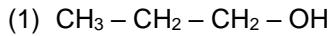
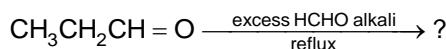
Given: Rydberg constant $R_H = 10^5 \text{ cm}^{-1}$, $h = 6.6 \times 10^{-34} \text{ J s}$, $c = 3 \times 10^8 \text{ m/s}$

- (1) Lyman series, $\infty \rightarrow 1$
- (2) Paschen series, $5 \rightarrow 3$
- (3) Paschen series, $\infty \rightarrow 3$
- (4) Balmer series, $\infty \rightarrow 2$

Answer (3)

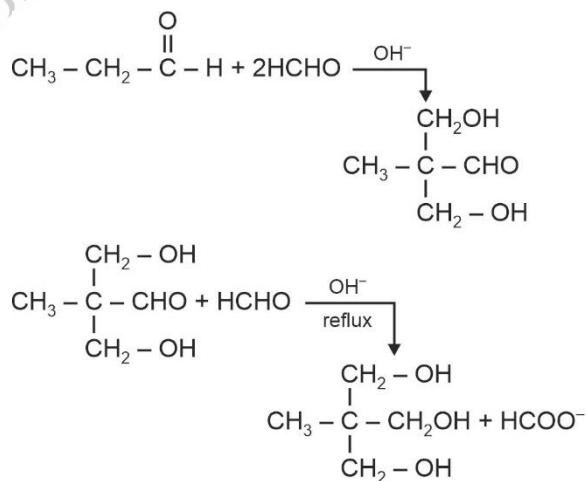
Sol. $\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$

$$\frac{1}{\lambda} = 10^5 \left(\frac{1}{3^2} - \frac{1}{\infty^2} \right)$$






$$\frac{1}{\lambda} = 10^5 \times \frac{1}{9}$$

$$\lambda = 9 \times 10^{-5}$$

$$\lambda = 900 \times 10^{-7} \text{ cm}$$


$$= 900 \text{ \AA}$$

56. The major product of the following reaction is

Answer (3)

Sol. Propanal undergoes aldol condensation with excess of HCHO in presence of OH^- ions to 2,2-dihydroxy methyl propanal which further reacts with HCHO and undergoes Cannizzaro reaction to give 2,2-hydroxymethylpropan-1-ol.

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

57. Match the **LIST-I** with **LIST-II**.

	LIST-I (Classification of molecules based on octet rule)		LIST-II (Example)
A.	Molecules obeying octet rule	I.	NO, NO ₂
B.	Molecules with incomplete octet	II.	BCl ₃ , AlCl ₃
C.	Molecules with incomplete octet with odd electron	III.	H ₂ SO ₄ , PCl ₅
D.	Molecules with expanded octet	IV.	CCl ₄ , CO ₂

Choose the **correct** answer from the options given below.

(1) A-IV, B-I, C-III, D-II (2) A-II, B-IV, C-III, D-I
 (3) A-IV, B-II, C-I, D-III (4) A-III, B-II, C-I, D-IV

Answer (3)

Sol. NO = 7e⁻ } Incomplete octet with
 NO₂ = 7e⁻ } odd electron

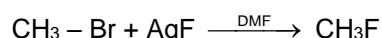
BCl₃ = 6e⁻ } Incomplete octet
 AlCl₃ = 6e⁻

H₂SO₄ = 12e⁻, PCl₅ = 10e⁻ \Rightarrow molecules with expanded octet

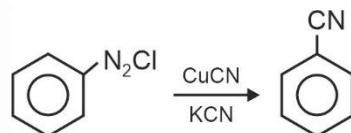
CCl₄ = 8e⁻, CO₂ = 8e⁻ \Rightarrow molecules obeying octet rule

58. Match the **LIST-I** with **LIST-II**.

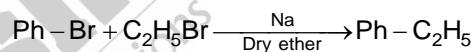
	LIST-I (Name reaction)		LIST-II (Product obtainable)
A.	Swarts reaction	I.	Ethyl benzene
B.	Sandmeyer's reaction	II.	Ethyl iodide

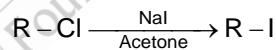

C.	Wurtz-Fittig reaction	III.	Cyanobenzene
D.	Finkelstein reaction	IV.	Ethyl fluoride

Choose the **correct** answer from the options given below.


(1) A-II, B-I, C-III, D-IV (2) A-IV, B-I, C-III, D-II
 (3) A-IV, B-III, C-I, D-II (4) A-II, B-III, C-I, D-IV

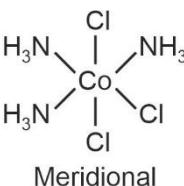
Answer (3)


Sol. Swarts reaction : Halogen exchange rxn


Sandmeyer's reaction :

Wurtz-Fittig reaction :

Finkelstein reaction : Halogen exchange rxn




59. The complex that shows Facial - Meridional isomerism is

(1) [Co(en)₂Cl₂]⁺ (2) [Co(en)₃]³⁺
 (3) [Co(NH₃)₄Cl₂]⁺ (4) [Co(NH₃)₃Cl₃]

Answer (4)

Sol. Ma₃b₃ type of complex can show Facial-Meridional type isomerism. (where a and b are monodentate ligands)

 Delivering Champions Consistently

 AIR 25	 AIR 67	 AIR 78	 AIR 93	 AIR 95	 AIR 98
JEE (Advanced) 2024					

 Aakash
Medical IIT-JEE Foundations

 Karnataka Topper	 Telangana Topper
 Sanvi Jain	 M Sai Divya Teja Reddy
 Rishi Shekher Shukla	 Telangana Topper
JEE (Main) 2024	

Sol. Fructose has α -hydroxy ketone group which tautomerise to aldehyde group in presence of base, therefore it reduces Tollen's reagent.

In presence of base, fructose undergo rearrangement to give glucose and mannose.

65. The d-electronic configuration of an octahedral Co(II) complex having magnetic moment of 3.95 BM is:

(1) $t_{2g}^5 e_g^2$ (2) $t_{2g}^3 e_g^0$
 (3) $t_{2g}^6 e_g^1$ (4) $e_g^4 t_{2g}^2$

Answer (1)

Sol. Co^{2+} complex having $\mu = 3.95$ BM

Hence number of unpaired electron = 3

$$\text{Co}^{2+} \Rightarrow 3d^7 = t_{2g}^5 e_g^2$$

66. Which of the following happens when NH_4OH is added gradually to the solution containing 1 M A^{2+} and 1 M B^{3+} ions?

Given : $K_{\text{sp}}[\text{A}(\text{OH})_2] = 9 \times 10^{-10}$ and $K_{\text{sp}}[\text{B}(\text{OH})_3] = 27 \times 10^{-18}$ at 298 K

(1) $\text{B}(\text{OH})_3$ will precipitate before $\text{A}(\text{OH})_2$
 (2) $\text{A}(\text{OH})_2$ will precipitate before $\text{B}(\text{OH})_3$
 (3) $\text{A}(\text{OH})_2$ and $\text{B}(\text{OH})_3$ will precipitate together
 (4) Both $\text{A}(\text{OH})_2$ and $\text{B}(\text{OH})_3$ do not show precipitation with NH_4OH

Answer (1)

Sol. Condition for precipitation $\text{IP} > K_{\text{sp}}$

For, $[\text{A}(\text{OH})_2]$

$$[\text{A}^{2+}] [\text{OH}^-]^2 > 9 \times 10^{-10}$$

$$[\text{A}^{2+}] = 1 \text{ M}$$

$$[\text{OH}^-] > 3 \times 10^{-5}$$

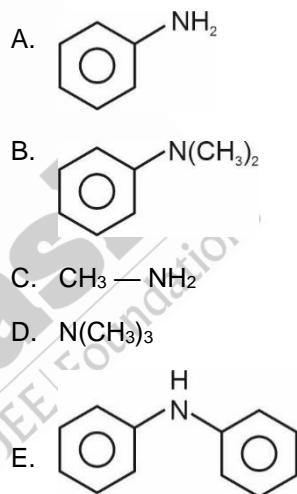
For, $[\text{B}(\text{OH})_3]$

$$[\text{B}^{3+}] [\text{OH}^-]^3 > 27 \times 10^{-18}$$

$$[\text{B}^{3+}] = 1 \text{ M}$$

$$[\text{OH}^-] > 3 \times 10^{-6}$$

So, $\text{B}(\text{OH})_3$ will precipitate first


67. The **incorrect** statement among the following is

(1) PF_3 exists but NF_5 does not
 (2) PH_3 shows lower proton affinity than NH_3
 (3) SO_2 can act as an oxidizing agent, but not as a reducing agent
 (4) NO_2 can dimerise easily

Answer (3)

Sol. SO_2^{+4} can acts as both oxidising agent as well as reducing agents because due to intermediate oxidation state, it can oxidise and reduce as well.

68. Which among the following react with Hinsberg's reagent?

Choose the correct answer from the options given below

(1) A, B and E Only
 (2) C and D Only
 (3) A,C and E Only
 (4) B and D Only

Answer (3)

Sol. Primary and secondary amines can reacts with Hinsberg reagent.

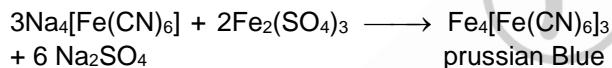

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

69. Given below are two statements

Statement I : In Lassaigne's test, the covalent organic molecules are transformed into ionic compounds.


Statement II: The sodium fusion extract of an organic compound having N and S gives prussian blue colour with FeSO_4 and $\text{Na}_4[\text{Fe}(\text{CN})_6]$

In the light of the above statements, choose the correct answer from the options given below

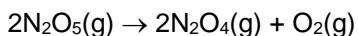
- Both Statement I and Statement II are false
- Statement I is false but Statement II is true
- Both Statement I and Statement II are true
- Statement I is true but Statement II is false

Answer (4)

Sol. Lassaigne's test is a general test for detection of halogen, nitrogen and sulphur in an organic compound. These elements covalently bonded to the organic compounds, In order to detect them, these have to converted into ionic forms.

70. The element that does not belong to the same period of the remaining elements (modern periodic table) is

- Iridium
- Osmium
- Palladium
- Platinum

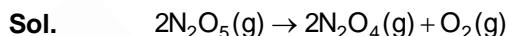

Answer (3)

Sol. Ir, Os and Pt belong to 6th period of periodic table while Pd belongs to 5th period.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

71. For the thermal decomposition of $\text{N}_2\text{O}_5(\text{g})$ at constant volume, the following table can be formed, for the reaction mentioned below.



Sr. No.	Time/s	Total pressure/(atm)
1	0	0.6
2	100	'x'

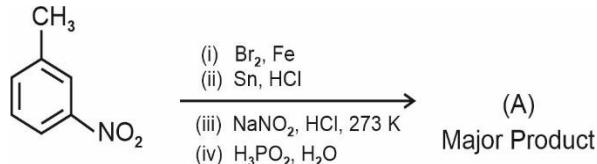
$$x = \text{_____} \times 10^{-3} \text{ atm} \quad [\text{nearest integer}]$$

Given : Rate constant for the reaction is $4.606 \times 10^{-2} \text{ s}^{-1}$.

Answer (897)

$$k = \frac{2.303}{t} \log \frac{0.9 - 0.6}{(0.9 - x)}$$

$$2 \times 10^{-2} \times 100 = \log \frac{0.3}{(0.9 - x)}$$


$$100 = \frac{0.3}{(0.9 - x)}$$

$$= \frac{0.9 - x}{0.3} = 0.01$$

$$0.9 - x = 0.003$$

$$= 897 \times 10^{-3}$$

72. Consider the following sequence of reactions to produce major product (A)

Molar mass of product (A) is _____ g mol⁻¹.

(Given molar mass in g mol⁻¹ of C : 12, H : 1, O : 16, Br : 80, N : 14, P : 31)

 Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

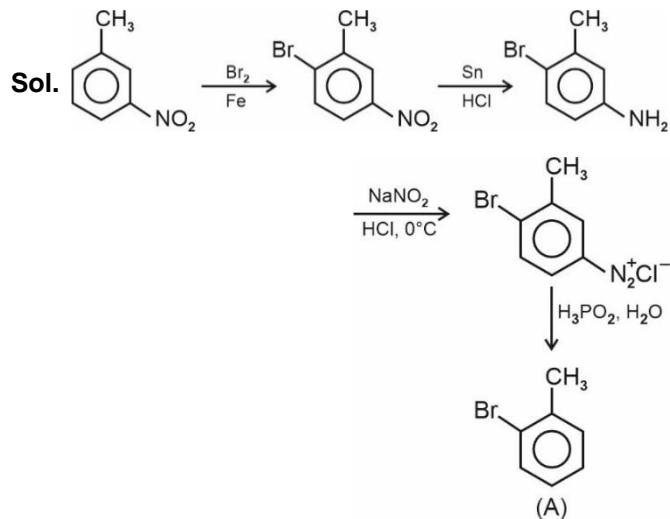
AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
4 Year Classroom

JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

Karnataka Topper
AIR 1
Sanvi Jain
2 Year Classroom


Telangana Topper
AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

Telangana Topper
AIR 19
Rishi Shekher Shukla
2 Year Classroom

JEE (Main) 2024

Answer (171)

Molar mass of A = 171 g/mol

73. During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is ____%.
 (Given molar mass in g mol⁻¹ of Ba : 137, S : 32, O : 16)

Answer (40)

Sol. m mole of BaSO₄ = mmoles of S = $\frac{466}{233}$

Mass of S = $\frac{466}{233} \times 32$ mg

= 64 mg

% S = $\frac{64}{160} \times 100 = 40\%$

74. The standard enthalpy and standard entropy of decomposition of N₂O₄ to NO₂ are 55.0 kJ mol⁻¹ and

175.0 J/K/mol respectively. The standard free energy change for this reaction at 25°C in J mol⁻¹ is _____ (Nearest integer)

Answer (2850)

Sol. $\Delta H_{rxn}^\circ = 55.0 \text{ kJ/mol}$ $T = 298 \text{ K}$

$\Delta S_{rxn}^\circ = 175 \text{ J/mol}$

$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$

= 55000 - 298 × 175

= 2850 J/mol

75. If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (K_b) of ethylamine is 10^{-x}. The value of x is _____ (nearest integer).

[The degree of ionization of ethylamine can be neglected with respect to unity.]

Answer (7)

Sol. pOH + pH = 14

pOH = 14 - 9

pOH = 5

[OH⁻] = 10⁻⁵ M

[OH⁻] = $\sqrt{K_b \cdot C}$

C = concentration of weak base = 1 mM = 10⁻³ M

10⁻⁵ = $\sqrt{K_b \times 10^{-3}}$

10⁻¹⁰ = K_b × 10⁻³

K_b = 10⁻⁷

x = 7

Delivering Champions Consistently

AIR 25
Rishi Shekher
Shukla
2 Year Classroom

JEE (Advanced) 2024

AIR 67
Krishna Sai
Shishir
2 Year Classroom

AIR 78
Abhishek
Jain
2 Year Classroom

AIR 93
Hardik
Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit
Aggarwal
4 Year Classroom

JEE (Main) 2024

AIR 34
Sanvi
Jain
2 Year Classroom

AIR 15
M Sai Divya
Teja Reddy
2 Year Classroom

AIR 19
Rishi Shekher
Shukla
2 Year Classroom