Answers \& Solutions

Time : 3 hrs.

M.M. : 300

JEE (Main)-2023 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and -1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Choose the correct relationship between Poisson ratio (σ), bulk modulus (K) and modulus of rigidity (η) of a given solid object
(1) $\sigma=\frac{6 K-2 \eta}{3 K-2 \eta}$
(2) $\sigma=\frac{6 K+2 \eta}{3 K-2 \eta}$
(3) $\sigma=\frac{3 K-2 \eta}{6 K+2 \eta}$
(4) $\sigma=\frac{3 K+2 \eta}{6 K+2 \eta}$

Answer (3)

Sol. Poisson ratio (σ), bulk modulus (K) and modulus of rigidity (η) are related by
$\because 2 \eta(1+\sigma)=3 K(1-2 \sigma)$
$2 \eta+2 \eta \sigma=3 K-6 K \sigma$
$\sigma=\frac{3 K-2 \eta}{2 \eta+6 K}$
2. A small object at rest, absorbs a light pulse of power 20 mW and duration 300 ns . Assuming speed of light as $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the momentum of the object becomes equal to
(1) $2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(2) $3 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(3) $1 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(4) $0.5 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer (1)

Sol. Assuming the small object as photon.

$$
\begin{aligned}
\operatorname{Momentum}(p) & =\frac{E}{C} \\
& =\frac{20 \times 10^{-3} \times 300 \times 10^{-9}}{3 \times 10^{8}}
\end{aligned}
$$

$$
=2 \times 10^{-17} \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

3. A massless square loop, of wire of resistance 10Ω, supporting a mass of 1 g , hangs vertically with one of its sides in a uniform magnetic field of $10^{3} \mathrm{G}$, directed outwards in the shaded region. A dc voltage V is applied to the loop. For what value of V, the magnetic force will exactly balance the weight of the supporting mass of 1 g ? (If sides of the loop $=10 \mathrm{~cm}, g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) 1 V
(2) 10 V
(3) $\frac{1}{10} \mathrm{~V}$
(4) 100 V

Answer (2)

Sol. For balancing of force
$\therefore \quad F_{\text {loop }}=$ weight
$\left(\frac{V}{R}\right) I B=m g$
$\left(\frac{V}{10}\right) \times \frac{10}{100} \times\left(10^{3} \times 10^{-4}\right)=\left(\frac{1}{1000}\right) \times 10$
$V=10$ volts
4. The magnetic moment associated with two closely wound circular coils A and B of radius $r_{A}=10 \mathrm{~cm}$ and $r_{\mathrm{B}}=20 \mathrm{~cm}$ respectively are equal if: (where N_{A}, I_{A} and N_{B}, I_{B} are number of turn and current of A and B respectively)
(1) $\mathrm{N}_{\mathrm{A}} \mathrm{l}_{\mathrm{A}}=4 \mathrm{~N}_{\mathrm{B}} \mathrm{l}_{\mathrm{B}}$
(2) $2 \mathrm{~N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{l}_{\mathrm{B}}$
(3) $\mathrm{N}_{\mathrm{A}}=2 \mathrm{~N}_{\mathrm{B}}$
(4) $4 \mathrm{~N}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}} \mathrm{l}_{\mathrm{B}}$

Answer (1)
Sol. $M_{A}=M_{B}$
$I_{A} N_{A}\left(\pi r_{A}^{2}\right)=I_{B} N_{B}\left(\pi r_{B}^{2}\right)$
$I_{A} N_{A}=4 I_{B} N_{B}$
5. A ball of mass 200 g rests on a vertical post of height 20 m . A bullet of mass 10 g , travelling in horizontal direction, hits the centre of the ball. After collision both travels independently. The ball hits the ground at a distance 30 m and bullet at a distance of 120 m from the foot of the post. The value of initial velocity of the bullet will be (if $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) $60 \mathrm{~m} / \mathrm{s}$
(2) $120 \mathrm{~m} / \mathrm{s}$
(3) $400 \mathrm{~m} / \mathrm{s}$
(4) $360 \mathrm{~m} / \mathrm{s}$

Answer (4)

Sol. \because Time of flight of each ball and bullet

$$
=\sqrt{\frac{2 H}{g}}=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{~s}
$$

\Rightarrow By applying linear momentum conservation
$10 u+200(0)=200\left(\frac{30}{2}\right)+10\left(\frac{120}{2}\right)$
$u=360 \mathrm{~m} / \mathrm{s}$
6. Two isolated metallic solid spheres of radii R and $2 R$ are charged such that both have same charge density σ. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is σ^{\prime}. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
(1) $\frac{5}{6}$
(2) $\frac{4}{3}$
(3) $\frac{5}{3}$
(4) $\frac{9}{4}$

Answer (1)

Sol. $\sigma=\frac{Q_{1}}{4 \pi R^{2}}=\frac{Q_{2}}{4 \pi(2 R)^{2}}$

$$
\text { Now } \begin{aligned}
Q_{2}^{\prime} & =Q_{\text {total }}\left[\frac{R_{2}}{R_{1}+R_{2}}\right] \\
& =\left(Q_{1}+Q_{2}\right)\left[\frac{2 R}{3 R}\right] \\
& =\sigma\left(20 \pi R^{2}\right) \frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \sigma_{2}^{\prime} & =\frac{Q_{2}^{\prime}}{4 \pi(2 R)^{2}}=\frac{\sigma\left(20 \pi R^{2}\right) \frac{2}{3}}{16 \pi R^{2}} \\
& =\frac{5}{4} \times \frac{2}{3} \sigma \\
& =\frac{5}{6} \sigma
\end{aligned}
$$

7. The pressure (P) and temperature (T) relationship of an ideal gas obeys the equation $P T^{2}=$ constant. The volume expansion coefficient of the gas will be
(1) $\frac{3}{T}$
(2) $\frac{3}{T^{2}}$
(3) $\frac{3}{T^{3}}$
(4) $3 T^{2}$

Answer (1)

Sol. $P T^{2}=$ constant
From $P V=n R T \Rightarrow \frac{T^{3}}{V}=$ constant
$T^{3} \propto V$
$3 T^{2} d T \propto d V$
From (1) and (2)
$\frac{3 d T}{T}=\frac{d V}{V}$
$\therefore \quad \gamma=\frac{1}{V} \frac{d V}{d T}=\frac{3}{T}$
8. Heat is given to an ideal gas in an isothermal process.
A. Internal energy of the gas will decrease.
B. Internal energy of the gas will increase.
C. Internal energy of the gas will not change.
D. The gas will do positive work.
E. The gas will do negative work.

Choose the correct answer from the options given below:
(1) C and E only
(2) C and D only
(3) A and E only
(4) B and D only

Answer (2)

Sol. Isothermal process $\Delta T=0$
$\Delta U=\frac{f}{2} n R \Delta T$
$\Delta U=0$
No change in internal energy
$\Delta Q=\Delta W \quad$ (1st law)
$\Delta Q=+v e$
$\Delta W=+\mathrm{ve}$
9. Match Column-I with Column-II :

Column-I (x - t graphs)			Column-II (v-t graphs)
A.		I.	

Choose the correct answer from the options given below :
(1) A-I, B-III, C-IV, D-II
(2) A-II, B-III, C-IV, D-I
(3) A-I, B-II, C-III, D-IV
(4) A-II, B-IV, C-III, D-I

Answer (4)
Sol.
(A)

(B)

(C)

(D)

10. The output waveform of the given logical circuit for the following inputs A and B as shown below, is

(1)

(3) $\begin{array}{lll:l:l}1 \\ 0 & t_{1} & t_{2} & t_{3} t_{4} t_{5} & t_{6} \\ 0 & & & \end{array}$
(4)

Answer (1)
Sol.

Truth table

A	B	Y	
0	0	0	
0	1	1	OR Gate
1	0	1	
1	1	1	

11. The charge flowing in a conductor changes with time as $Q(t)=\alpha t-\beta t^{2}+\gamma t^{3}$. Where α, β and γ are constants. Minimum value of current is
(1) $\alpha-\frac{\gamma^{2}}{3 \beta}$
(2) $\alpha-\frac{\beta^{2}}{3 \gamma}$
(3) $\alpha-\frac{3 \beta^{2}}{\gamma}$
(4) $\beta-\frac{\alpha^{2}}{3 \gamma}$

Answer (2)

Sol. $Q(t)=\alpha t-\beta t^{2}+\gamma t^{3}$
$i(t)=\alpha-2 \beta t+3 \gamma t^{2}$
$\frac{d i}{d t}=-2 \beta+6 \gamma t=0($ for \max / \min of $i)$
at $t=\frac{\beta}{3 r}$ (i is minimum as i is an upward parabola)
$i\left(\frac{\beta}{3 \gamma}\right)=\alpha-2 \beta\left(\frac{\beta}{3 \gamma}\right)+\frac{3 \gamma \beta^{2}}{9 \gamma^{2}}$
$=\alpha \frac{-\beta^{2}}{3 \gamma}$
12. The height of liquid column raised in a capillary tube of certain radius when dipped in liquid A vertically is, 5 cm . If the tube is dipped in a similar manner in another liquid B of surface tension and density double the values of liquid A, the height of liquid column raised in liquid B would be \qquad m.
(1) 0.20
(2) 0.05
(3) 0.5
(4) 0.10

Answer (2)

Sol. height of capillary rise $=\frac{2 s \cos \theta}{\rho g R}$
When in $A 5 \mathrm{~cm}=\frac{2 s_{A} \cos \theta}{\rho_{A} g R}$
When in $B h=\frac{2 s_{B} \cos \theta}{\rho_{B} g R}$
$s_{B}=2 s_{A}$ and $\rho_{B}=2 \rho_{A}$
$h=\frac{2 \times 2 s_{A} \times \cos \theta}{2 \rho_{A} g R}=5 \mathrm{~cm}$
13. A person has been using spectacles of power -1.0 dioptre for distant vision and a separate reading glass of power 2.0 dioptres. What is the least distance of distinct vision for this person
(1) 50 cm
(2) 10 cm
(3) 30 cm
(4) 40 cm

Answer (1)
Sol. $u=25 \mathrm{~cm}$

$$
\begin{aligned}
f= & \frac{1}{2} m=50 \mathrm{~cm} \\
& \frac{1}{v}-\frac{1}{u}=\frac{1}{f} \\
\Rightarrow & \frac{1}{v}+\frac{1}{25}=-\frac{1}{50} \\
& \frac{1}{v}=-\frac{1}{50} \\
\Rightarrow & u=-50 \mathrm{~cm}
\end{aligned}
$$

14. Speed of an electron in Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in m / s is
(1) $\left(7.5 \times 10^{6}\right)$
(2) $\left(1.08 \times 10^{6}\right)$
(3) $\left(8.4 \times 10^{6}\right)$
(4) $\left(3.6 \times 10^{6}\right)$

Answer (3)

Sol. $v \alpha \frac{z}{n}$

$$
\begin{aligned}
\frac{v_{1}}{v_{2}} & =\left(\frac{n_{2}}{n_{1}}\right) \\
\Rightarrow & \frac{3.6 \times 10^{6}}{v_{2}}=\frac{3}{7} \\
\Rightarrow & v_{2}=\frac{7}{3} \times 3.6 \times 10^{6} \mathrm{~m} / \mathrm{s} \\
& =8.4 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

15. Electric field in a certain region is given by $\overrightarrow{\mathrm{E}}=\left(\frac{\mathrm{A}}{x^{2}} \hat{i}+\frac{\mathrm{B}}{y^{2}} \hat{j}\right)$. The SI unit of A and B are
(1) $\mathrm{Nm}^{3} \mathrm{C} ; \mathrm{Nm}^{2} \mathrm{C}$
(2) $\mathrm{Nm}^{2} \mathrm{C} ; \mathrm{Nm}^{3} \mathrm{C}$
(3) $\mathrm{Nm}^{2} \mathrm{C}^{-1} ; \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(4) $\mathrm{Nm}^{3} \mathrm{C}^{-1} ; \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Answer (3)

Sol. $\vec{E}=\left(\frac{A}{x^{2}} \hat{i}+\frac{B}{y^{3}} \hat{j}\right)$
$\left[\frac{A}{x^{2}}\right]=[E]=\left[\frac{F}{q}\right]=\left[\frac{N}{C}\right]=N C^{-1}$
$[\mathrm{A}]=\left(\mathrm{Nm}^{2} \mathrm{C}^{-1}\right)$
$[B]=\mathrm{Nm}^{3} \mathrm{C}^{-1}$
16. A sinusoidal carrier voltage is amplitude modulated. The resultant amplitude modulated wave has maximum and minimum amplitude of 120 V and 80 V respectively. The amplitude of each sideband is
(1) 10 V
(2) 15 V
(3) 20 V
(4) 5 V

Answer (1)
Sol. Amplitude of each side band $=\frac{A_{\text {messsage }}}{2}$

> Acarier + Amessage $=120$
> Acarrier - $A_{\text {message }}=80$

From (1) and (2)
$A_{\text {message }}=20 \mathrm{~V}$
\therefore Amplitude of each side band $=10 \mathrm{~V}$
17. As per the given figure, a small ball P slides down the quadrant of a circle and hits the other ball Q of equal mass which is initially at rest. Neglecting the effect of friction and assume the collision to be elastic, the velocity of ball Q after collision will be ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(1) $0.25 \mathrm{~m} / \mathrm{s}$
(2) $2 \mathrm{~m} / \mathrm{s}$
(3) 0
(4) $4 \mathrm{~m} / \mathrm{s}$

Answer (2)

Sol.

Mass is same and elastic collision, so speed gets exchanged, $v=2 \mathrm{~m} / \mathrm{s}$
18. If the gravitational field in the space is given as $\left(-\frac{\mathrm{K}}{\mathrm{r}^{2}}\right)$. Taking the reference point to be at $\mathrm{r}=2 \mathrm{~cm}$ with gravitational potential $V=10 \mathrm{~J} / \mathrm{kg}$. Find the gravitational potential at $r=3 \mathrm{~cm}$ in SI unit
(Given, that $\mathrm{K}=6 \mathrm{Jcm} / \mathrm{kg}$)
(1) 10
(2) 12
(3) 11
(4) 9

Answer (3)

Sol. $E=-\frac{K}{r^{2}}$

$$
\begin{aligned}
\Delta V & =-\int_{r=2 \mathrm{~cm}}^{3 \mathrm{~cm}} E \cdot d r \\
& =\int_{2}^{3} \frac{k}{r^{2}} d r \\
& =\left[-\frac{K}{r}\right]_{2}^{3}=\left(\frac{K}{6}\right)=\frac{6}{6}=1 \mathrm{~J} / \mathrm{kg} \\
V_{f}- & V_{i}=1 \\
\Rightarrow & V_{f}-10=1 \\
V_{f} & =11 \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

19. In a series $L R$ circuit with $X_{L}=R$, power factor is P_{1}. If a capacitor of capacitance C with $X_{C}=X_{L}$ is added to the circuit the power factor becomes P_{2}. The ratio of P_{1} to P_{2} will be:
(1) $1: 2$
(2) $1: 3$
(3) $1: \sqrt{2}$
(4) $1: 1$

Answer (3)

Sol. $X_{L}=R$

$$
\Rightarrow \quad P_{1}=\frac{R}{\sqrt{X_{L}^{2}+R^{2}}}=\frac{1}{\sqrt{2}}
$$

Now, $X_{L}=X_{C}=R$

$$
\begin{aligned}
& \Rightarrow P_{2}=\frac{R}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=1 \\
& \Rightarrow \quad \frac{P_{1}}{P_{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

20. The figure represents the momentum time (p-t) curve for a particle moving along an axis under the influence of the force. Identify the regions on the graph where the magnitude of the force is maximum and minimum respectively?
If $\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)<\mathrm{t}_{1}$

(1) a and b
(2) c and a
(3) c and b
(4) b and c

Answer (3)

Sol. $F=\frac{d p}{d t}$
$\Rightarrow \quad|F|=\left|\frac{d p}{d t}\right|=\mid$ slope of $p-t$ curve \mid
As we can see from graph,
$\left|F_{c}\right|$ is maximum and $\left|F_{b}\right|$ is minimum.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. In Young's double slit experiment, two slits S_{1} and S_{2} are 'd' distance apart and the separation from slits to screen is D (as shown in figure). Now if two transparent slabs of equal thickness 0.1 mm but refractive index 1.51 and 1.55 are introduced in the path of beam ($\lambda=4000 \AA$) from S_{1} and S_{2} respectively. The central bright fringe spot will shift by \qquad number of fringes.

Answer (10)

Sol. Path difference introduced by two slabs $=\left(\mu_{2}-\mu_{1}\right) t$

$$
\Rightarrow \text { Number of shifts }=\frac{\left(\mu_{2}-\mu_{1}\right) t}{\lambda}
$$

$$
=\frac{0.04 \times 0.1 \mathrm{~mm}}{4000 \AA}
$$

$$
=\frac{4 \times 10^{-2} \times 10^{-4}}{4 \times 10^{-7}}
$$

$$
=10
$$

As per the given figure, if $\frac{\mathrm{dl}}{\mathrm{dt}}=-1 \mathrm{~A} / \mathrm{s}$ then the value of V_{AB} at this instant will be \qquad V.

Answer (30)

Sol. From the circuit :

$$
\begin{aligned}
& V_{A}-i R-\frac{L d i}{d t}-12=V_{B} \\
& \Rightarrow V_{A}-V_{B}=2 \times 12+6(-1)+12 \text { volts } \\
& =30 \text { volts }
\end{aligned}
$$

23. A horse rider covers half the distance with $5 \mathrm{~m} / \mathrm{s}$ speed. The remaining part of the distance was travelled with speed $10 \mathrm{~m} / \mathrm{s}$ for half the time and with speed $15 \mathrm{~m} / \mathrm{s}$ for other half of the time. The mean speed of the rider averaged over the whole time of motion is $\frac{x}{7} \mathrm{~m} / \mathrm{s}$. The value of x is \qquad .

Answer (50)

Sol. Let S total distance

$$
\begin{equation*}
\Rightarrow \quad t_{1}=\frac{\frac{S}{2}}{5} \tag{1}
\end{equation*}
$$

Also, $\frac{S}{2}=\frac{10 t_{2}}{2}+\frac{15 t_{2}}{2}$

$$
\begin{equation*}
\Rightarrow \quad t_{2}=\frac{S}{25} \tag{2}
\end{equation*}
$$

\Rightarrow Mean speed $=\frac{S}{t_{1}+t_{2}}$
$=\frac{S}{\frac{S}{10}+\frac{S}{25}}=\frac{250}{35} \mathrm{~m} / \mathrm{s}=\frac{50}{7} \mathrm{~m} / \mathrm{s}$
24. In an experiment for estimating the value of focal length of converging mirror, image of an object placed at 40 cm from the pole of the mirror is formed at distance 120 cm from the pole of the mirror. These distances are measured with a modified scale in which there are 20 small divisions in 1 cm . The value of error in measurement of focal length of the mirror is $\frac{1}{\mathrm{~K}} \mathrm{~cm}$. The value of x is \qquad -
Answer (32)
Sol. $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow-\frac{1}{f^{2}} d f=-\frac{1}{v^{2}} d v-\frac{1}{u^{2}} d u$
$\Rightarrow \frac{d f}{f^{2}}=\frac{d v}{v^{2}}+\frac{d u}{u^{2}}$
From (1) : $-\frac{1}{120}-\frac{1}{40}=\frac{1}{f} \Rightarrow f=-30 \mathrm{~cm}$
Also, least count $=\frac{1 \mathrm{~cm}}{20}=0.05 \mathrm{~cm}$

$$
\begin{aligned}
& \Rightarrow \quad d f=\left[\frac{0.05}{120^{2}}+\frac{0.05}{40^{2}}\right] \times 30^{2} \\
& \quad=0.05\left[\frac{1}{16}+\frac{9}{16}\right]=\frac{5}{8} \times \frac{5}{100}=\frac{1}{32} \mathrm{~cm} \\
& \Rightarrow \quad k=32
\end{aligned}
$$

25. In a screw gauge, there are 100 divisions on the circular scale and the main scale moves by 0.5 mm on a complete rotation of the circular scale. The zero of circular scale lies 6 divisions below the line of graduation when two studs are brought in contact with each other. When a wire is placed between the studs, 4 linear scale divisions are clearly visible while $46^{\text {th }}$ division the circular scale coincide with the reference line. The diameter of the wire is
\qquad $\times 10^{-2} \mathrm{~mm}$.

Answer (220)

Sol. Least count of screw gauge $=\frac{0.5}{100} \mathrm{~mm}=\frac{1}{200} \mathrm{~mm}$

$$
\begin{aligned}
\text { Zero error of screw gauge } & =+\frac{6}{200} \mathrm{~mm}=+\frac{3}{100} \\
& =0.03 \mathrm{~mm}
\end{aligned}
$$

$$
\text { Reading of screw gauge }=4 \times 0.5+\frac{46}{200} \mathrm{~mm}
$$

$$
=2+\frac{23}{100} \mathrm{~mm}=2.23 \mathrm{~mm}
$$

So diameter of wire $=2.23 \mathrm{~mm}-0.03 \mathrm{~mm}$

$$
\begin{aligned}
& =2.20 \mathrm{~mm} \\
& =220 \times 10^{-2} \mathrm{~mm}
\end{aligned}
$$

26. A capacitor of capacitance $900 \mu \mathrm{~F}$ is charged by a 100 V battery. The capacitor is disconnected from the battery and connected to another uncharged identical capacitor such that one plate of uncharged capacitor connected to positive plate and another plate of uncharged capacitor connected to negative plate of the charged capacitor. The loss of energy in this process is measured as $x \times 10^{-2} \mathrm{~J}$. The value of x is

Answer (225)

Sol. $U_{i}=\frac{1}{2} C V^{2}=\frac{1}{2} \times 900 \times 10^{-6} \times 100^{2}=4.5 \mathrm{~J}$
As the other capacitor is identical therefore charge is equally divided and potential difference across the capacitors becomes half. So
$U_{f}=\frac{1}{2} 2 C\left(\frac{V}{2}\right)^{2}=\frac{1}{2} \times 2 \times 900 \times 10^{-6}\left(\frac{100}{2}\right)^{2}$
$=\frac{9}{4} \mathrm{~J}=2.25 \mathrm{~J}$
So, loss in energy $\Delta U_{\text {loss }}=U_{i}-U_{f}$

$$
\begin{aligned}
& =2.25 \mathrm{~J} \\
& =225 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

27. A thin uniform of length 2 m , cross sectional area ' A ' and density ' d ' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity ω. If value of ω in terms of its rotational kinetic energy E is $\sqrt{\frac{\alpha E}{A d}}$ then value of α is \qquad .

Answer (3)

Sol. Kinetic energy of $\operatorname{rod} E=\frac{1}{2} \frac{\mathrm{ml}^{2}}{12} \omega^{2}$
or $\omega=\sqrt{\frac{24 E}{m l^{2}}}=\sqrt{\frac{24 E}{d \times A \times l^{3}}}$
$\Rightarrow \omega=\sqrt{\frac{24 E}{d A 2^{3}}}$
$=\sqrt{\frac{3 E}{A d}}$
So, $\alpha=3$
28. In the following circuit, the magnitude of current I_{1}, is \qquad A.

Answer (01.50)
Sol. The indicated diagram shows current flow diagram loops for writing Kirchhoff's law are also indicated, writing the equation

$2 I_{3}+I_{1}+I_{3}+I_{2}=5$
or $I_{1}+I_{2}+3 I_{3}=5$
$I_{2}-5=2\left(I_{3}-I_{2}\right)+\left(I_{1}+I_{3}-I_{2}\right)$
or $I_{1}-4 I_{2}+3 I_{3}=-5$
$\left(I_{1}+I_{3}\right)+\left(I_{1}+I_{3}-I_{2}\right)=2$
or $2 I_{1}-I_{2}+2 I_{3}=2$
on solving $I_{1}=\frac{3}{2} \mathrm{~A}, I_{2}=2, I_{3}=\frac{1}{2} \mathrm{~A}$
$=01.50$
29. A point source of light is placed at the centre of curvature of a hemispherical surface. The source emits a power of 24 W . The radius of curvature of hemisphere is 10 cm and the inner surface is completely reflecting. The force on the hemisphere due to the light falling on it is \qquad $\times 10^{-8} \mathrm{~N}$.
Answer (4)

Sol.

$$
\begin{aligned}
d A & =2 \pi R \sin \theta R d \theta \\
& =2 \pi R^{2} \sin \theta d \theta
\end{aligned}
$$

So, $d F=2 \frac{I d A}{C}$

$$
\begin{aligned}
& =\frac{2 \times 24}{4 \pi R^{2}} \times \frac{2 \pi R^{2} \sin \theta d \theta}{C} \\
& d F=\frac{24}{C} \sin \theta d \theta
\end{aligned}
$$

This $d F$ force will be radially outward so the component of this force in vertical direction is

$$
d F_{v}=d F \cos \theta
$$

$$
\int_{0}^{F_{v}} d F_{v}=\frac{24}{C} \int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta
$$

$$
=\frac{24}{2 C}=\frac{24}{2 \times 3 \times 10^{8}}=4 \times 10^{-8} \mathrm{~N}
$$

30. The general displacement of a simple harmonic oscillator is $x=A \sin \omega$ t. Let T be its time period. The slope of its potential energy (U) - time (t) curve will be maximum when $t=\frac{T}{\beta}$. The value of β is

Answer (8)

Sol. $U=\frac{1}{2} m \omega^{2} A^{2} \sin ^{2} \omega t$
So, $\frac{d U}{d t}=\frac{m \omega^{3} A^{2}}{2} \sin 2 \omega t$
This value will be maximum when

$$
\begin{aligned}
& \sin 2 \omega t=1 \\
& \text { or } 2 \omega t=\frac{\pi}{2} \\
& 2 \times \frac{2 \pi}{T} t=\frac{\pi}{2} \\
& \Rightarrow \quad t=\frac{T}{8}
\end{aligned}
$$

So $\beta=8$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. During the qualitative analysis of SO_{3}^{2-} using dilute $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which turns $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$) :
(1) red
(2) black
(3) blue
(4) green

Answer (4)
Sol. $\mathrm{SO}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \longrightarrow \underset{\text { (green) }}{\mathrm{Cr}^{3+}}+\mathrm{SO}_{4}^{2-}$
32. Benzyl isocyanide can be obtained by:
A.

B.

C.

D.

Choose the correct answer from the options given below :
(1) A and D
(2) Only B
(3) A and B
(4) B and C

Answer (3)

Sol.
(A)

(B)

33. In the wet tests for identification of various cations by precipitation, which transition element cation doesn't belong to group IV in qualitative inorganic analysis?
(1) Co^{2+}
(2) Zn^{2+}
(3) Ni^{2+}
(4) Fe^{3+}

Answer (4)
Sol. Fe^{3+} belongs to IIIrd group
34. Amongst the following compounds, which one is an antacid?
(1) Meprobamate
(2) Brompheniramine
(3) Ranitidine
(4) Terfenadine

Answer (3)
Sol. Ranitidine is not an antacid.
35. The alkaline earth metal sulphate(s) which are readily soluble in water is/are:
A. BeSO_{4}
B. MgSO_{4}
C. CaSO_{4}
D. SrSO_{4}
E. BaSO_{4}

Choose the correct answer from the options given below:
(1) B only
(2) A and B
(3) B and C
(4) A only

Answer (2)
Sol. BeSO_{4} and MgSO_{4} are readily soluble in water.
36. Formation of photochemical smog involves the following reaction in which A, B and C are respectively.
i. $\quad \mathrm{NO}_{2} \xrightarrow{h \nu} \mathrm{~A}+\mathrm{B}$
ii. $\mathrm{B}+\mathrm{O}_{2} \rightarrow \mathrm{C}$
iii. $\mathrm{A}+\mathrm{C} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

Choose the correct answer from the options given below:
(1) $\mathrm{O}, \mathrm{N}_{2} \mathrm{O}$ and NO
(2) NO, O and O_{3}
(3) $\mathrm{N}, \mathrm{O}_{2}$ and O_{3}
(4) O, NO and NO_{3}^{-}

Answer (2)

Sol. i) $\mathrm{NO}_{2} \xrightarrow{\mathrm{hv}} \frac{\mathrm{NO}}{(\mathrm{A})}+\frac{\mathrm{O}}{(\mathrm{B})}$
ii) $\frac{\mathrm{O}}{(\mathrm{B})}+\mathrm{O}_{2} \longrightarrow \frac{\mathrm{O}_{3}}{(\mathrm{C})}$
iii) $\frac{\mathrm{NO}}{(\mathrm{A})}+\frac{\mathrm{O}_{3}}{(\mathrm{C})} \longrightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
37. Lithium aluminium hydride can be prepared from the reaction of
(1) LiH and $\mathrm{Al}(\mathrm{OH})_{3}$
(2) LiCl and $\mathrm{Al}_{2} \mathrm{H}_{6}$
(3) $\mathrm{LiCl}, \mathrm{Al}$ and H_{2}
(4) LiH and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

Answer (4)

Sol. $8 \mathrm{LiH}+\mathrm{Al}_{2} \mathrm{Cl}_{6} \rightarrow 2 \mathrm{LiAlH}_{4}+6 \mathrm{LiCl}$
38. For OF_{2} molecule consider the following:
A. Number of lone pairs on oxygen is 2 .
B. FOF angle is less than 104.5°.
C. Oxidation state of O is -2 .
D. Molecule is bent ' V ' shaped
E. Molecular geometry is linear.

Correct options are:
(1) C, D, E only
(2) B, E, A only
(3) A, C, D only
(4) A, B, D only

Answer (4)

Sol.

A : No. of lone pairs on oxygen $=2$
B : $\sim_{F}^{\circ}\left(\theta<\right.$ Bond angle in $\mathrm{H}_{2} \mathrm{O}\left(104.5^{\circ}\right)$
D : molecule is bent " v " shaped
39. The major products ' A ' and ' B ', respectively, are

(1)

(2)

(3)

(4)
 \&

Answer (4)

Sol.

40. Match List I with List II

List 1

A.

List II

I. Fittig reaction
B.

II. Wurtz Fittig reaction
c.

III. Finkelstein reaction
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaI}$
$\rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
IV. Sandmeyer reaction

Choose the correct answer from the options given below:
(1) $A-I I, B-I, C-I I I, D-I V$
(2) $A-I I, B-I, C-I V, D-I I I$
(3) $A-I V, B-I I, C-I I I, D-I$
(4) A - III, B - II, C - IV, D - I

Answer (2)

Sol. (A)

(B)

(C)

(D) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{NaI} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaCl}$
(Finkelstein reaction)
41. Given below are two statements : one is labelled as

Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : In expensive scientific instruments, silica gel is kept in watch-glasses or in semipermeable membrane bags.
Reason (R) : Silica gel adsorbs moisture from air via adsorption, thus protects the instrument from water corrosion (rusting) and / or prevents malfunctioning.
In the light of the above statements, choose the correct answer from the options given below :
(1) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(2) (A) is false but (R) is true
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true but (R) is the correct explanation of (A)

Answer (4)

Sol. Assertion is correct and Reason is correct explanation of Assertion.

Silica gel adsorbs moisture and thus protects the instrument from water corrosion (rusting) and prevents malfunctioning
42. To inhibit the growth of tumours, identify the compounds used from the following :
(A) EDTA
(B) Coordination Compounds of Pt
(C) D - Penicillamine
(D) Cis - Platin

Choose the correct answer from the option given below :
(1) C and D only
(2) B and D only
(3) A and B only
(4) A and C only

Answer (2)

Sol. Cis-platin is $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$; cis platin and other complexes of pt are used to inhibit the growth of tumours.
43. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Ketoses give Seliwonoff's test faster than Aldoses.

Reason (R) : Ketoses undergo β-elimination followed by formation of furfural.
In the light of the above statements, choose the correct answer from the options given below :
(1) (A) is true but (R) is false
(2) Both (A) and (R) are true and (R) is the correct explanation of (A)
(3) (A) is false but (R) is true
(4) Both (A) and (R) are true but (R) is not the correct explanation of (A)

Answer (1)

Sol.

This test relies on the principle that, when heated, ketoses are more rapidly dehydrated than Aldoses.

Ketose \rightarrow Red color formed immediately
Aldose \rightarrow light pink color formed slowly
44. What is the correct order of acidity of the protons marked $A-D$ in the given compounds?

(1) $\mathrm{H}_{C}>\mathrm{H}_{A}>\mathrm{H}_{D}>\mathrm{H}_{B}$
(2) $\mathrm{H}_{D}>\mathrm{H}_{C}>\mathrm{H}_{B}>\mathrm{H}_{A}$
(3) $\mathrm{H}_{\mathrm{C}}>\mathrm{HD}_{\mathrm{D}}>\mathrm{H}_{\mathrm{B}}>\mathrm{H}_{\mathrm{A}}$
(4) $\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{A}>\mathrm{H}_{B}$

Answer (4)

Sol.

$\mathrm{H}_{\mathrm{C}}>\mathrm{H}_{\mathrm{D}}>\mathrm{H}_{\mathrm{A}}>\mathrm{H}_{\mathrm{B}}$
H_{C} is hydrogen of carboxylic acid
H_{D} removal will lead to stable carbanion.
45. Which of the following compounds would give the following set of qualitative analysis?
(i) Fehling's Test : Positive
(ii) Na fusion extract upon treatment with sodium nitroprusside gives a blood red colour but not prussian blue.
(1)

(2)

(3)

(4)

Answer (4)
Sol. Fehling solution is not given by aromatic aldehydes.
1,2,3 are aromatic aldehydes
46. In the extraction of copper, its sulphide ore is heated in a reverberatory furnace after mixing with silica to
(1) Decrease the temperature needed for roasting of $\mathrm{Cu}_{2} \mathrm{~S}$
(2) Remove calcium as CaSiO_{3}
(3) Separate CuO as CuSiO_{3}
(4) Remove FeO as FeSiO_{3}

Answer (4)

Sol. $\underset{\text { Basic }}{\mathrm{FeO}+\underset{\text { Acidic }}{\mathrm{SiO}_{2}} \longrightarrow \underset{\text { (Slag) }}{ } \mathrm{FeSiO}_{3}}$
47. Match List I with List II

	List-I (Atomic number)		List-II (Block of periodic table)
A.	37	I.	p-block
B.	78	II.	d-block
C.	52	III.	f-block
D.	65	IV.	s-block

Choose the correct answer from the options given below
(1) A-II, B-IV, C-I, D-III
(2) A-IV, B-III, C-II, D-I
(3) A-IV, B-II, C-I, D-III
(4) A-I, B-III, C-IV, D-II

Answer (3)
Sol.

$37-$	s-Block
$78-$	d-Block
$52-$	p-Block
$65-$	f-Block

48. Which of the following is correct order of ligand field strength?
(1) $\mathrm{NH}_{3}<$ en $<\mathrm{CO}<\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(2) $\mathrm{S}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
(3) $\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<\mathrm{en}<\mathrm{CO}$
(4) $\mathrm{CO}<$ en $<\mathrm{NH}_{3}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}^{2-}$

Answer (3)

Sol. Ligand field strength
$\mathrm{S}^{2-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{NH}_{3}<$ en $<\mathrm{CO}$
49. Match List I with List II

	List-I (Molecules/lons)		List-II (No. of lone pairs of e- on central atom)
A.	IF_{7}	I.	Three
B.	$\mathrm{ICl}_{4}-$	II.	One
C.	XeF_{6}	III.	Two
D.	XeF_{2}	IV.	Zero

Choose the correct answer from the options given below
(1) A-II, B-III, C-IV, D-I
(2) A-IV, B-I, C-II, D-III
(3) A-II, B-I, C-IV, D-III
(4) A-IV, B-III, C-II, D-I

Answer (4)
Sol. (A) $\mathrm{IF}_{7} \quad-0$ lone pairs
(B) $\mathrm{ICl}_{4}^{-} \quad-2$ lone pairs
(C) $\mathrm{XeF}_{6}-1$ lone pair
(D) $\mathrm{XeF}_{2}-3$ lone pairs

$\left(\mathrm{IF}_{7}\right)$

$\left(\mathrm{ICl}_{4}\right)$

$\left(\mathrm{XeF}_{6}\right)$

50. Caprolactam when heated at high temperature in presence of water, gives
(1) Nylon 6, 6
(2) Nylon 6
(3) Dacron
(4) Teflon

Answer (2)

Sol. Caprolactum $\xrightarrow{\Delta}$ Nylon -6

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.
51. A solution containing 2 g of a non-volatile solute in 20 g of water boils at 373.52 K . The molecular mass of the solute is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer) Given, water boils at $373 \mathrm{~K}, \mathrm{~K}_{\mathrm{b}}$ for water $=0.52 \mathrm{~K}$ $\mathrm{kg} \mathrm{mol}^{-1}$

Answer (100)

Sol. $\Delta T_{b}=K_{b} . m$
$(0.52)=(0.52)(\mathrm{m})$
$\mathrm{m}=1=\frac{2(1000)}{(\mathrm{mw})(20)}$
$\mathrm{mw}=100$
52. A 300 mL bottle of soft drink has $0.2 \mathrm{M} \mathrm{CO}_{2}$ dissolved in it. Assuming CO_{2} behaves as an ideal gas, the volume of the dissolved CO_{2} at STP is
\qquad mL . (Nearest integer)
Given: At STP, molar volume of an ideal gas is 22.7 L mol- ${ }^{-1}$

Answer (1362)

Sol. Moles $=0.3 \times 0.2$
Volume at STP $=0.3 \times 0.2 \times 22.7$

$$
=1.362 \text { litre }
$$

$$
=1362 \mathrm{~mL}
$$

53. The energy of one mole of photons of radiation of frequency $2 \times 10^{12} \mathrm{~Hz}$ in $\mathrm{J} \mathrm{mol}^{-1}$ is \qquad . (Nearest integer)
[Given: $h=6.626 \times 10^{-34} \mathrm{Js}$
$\left.\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}\right]$
Answer (798)
Sol. $E=n h v$

$$
\begin{aligned}
& =\left(6.022 \times 10^{23}\right)\left(6.626 \times 10^{-34}\right) \times\left(2 \times 10^{12}\right) \\
& =798.03 \mathrm{~J} \\
& \approx 798 \mathrm{~J}
\end{aligned}
$$

54. Some amount of dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ is added to 671.141 mL of chloroform $\left(\mathrm{CHCl}_{3}\right)$ to prepare $2.6 \times 10^{-3} \mathrm{M}$ solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (DCM). The concentration of DCM is \qquad ppm (by mass).
Given:
Atomic mass: $\mathrm{C}=12$
H = 1
$\mathrm{Cl}=35.5$
Density of $\mathrm{CHCl}_{3}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}$

Answer (148)

Sol. Mass of $\mathrm{CHCl}_{3}=671.141 \times 1.49$

$$
=1000 \mathrm{gm}
$$

$2.6 \times 10^{-3}=\frac{\text { moles of } \mathrm{CH}_{2} \mathrm{Cl}_{2}}{0.671141}$

$$
\begin{aligned}
\Rightarrow \text { moles of } \mathrm{CH}_{2} \mathrm{Cl}_{2} & =1.74496 \times 10^{-3} \\
\text { mass of } \mathrm{CH}_{2} \mathrm{Cl}_{2} & =148.32 \times 10^{-3} \mathrm{gm} \\
\text { Composition of } \mathrm{CH}_{2} \mathrm{Cl}_{2} & =\frac{148.32 \times 10^{-3}}{1000} \times 10^{6} \\
& =148.32 \mathrm{ppm} \\
& \approx 148
\end{aligned}
$$

55. Consider the cell
$\mathrm{Pt}_{(\mathrm{s})}\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{~atm})\right| \mathrm{H}^{+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Fe}^{3+}(\mathrm{aq})$,
$\mathrm{Fe}^{2+}(\mathrm{aq}) \mid \mathrm{Pt}(\mathrm{s})$
When the potential of the cell is 0.712 V at 298 K , the ratio $\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]$ is \qquad .
(Nearest integer)
Given: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}, \mathrm{E}^{\ominus} \mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} \mid \mathrm{Pt}=0.771$
$\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$

Answer (10)

Sol. Anode $\quad \mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$\begin{aligned} \text { Cathode } & \left(\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}\right) \times 2 \\ & \mathrm{H}_{2}+2 \mathrm{Fe}^{3+} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{Fe}^{2+}\end{aligned}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \left(\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}\right)^{2}$
$0.712=0.771-0.059 \log \frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}$
$-0.059=-0.059 \log \frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}$
$\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=10$
56. If compound A reacts with B following first order kinetics with rate constant $2.011 \times 10^{-3} \mathrm{~s}^{-1}$. The time taken by A (in seconds) to reduce from 7 g to 2 g will be \qquad . (Nearest Integer)
$[\log 5=0.698, \log 7=0.845, \log 2=0.301]$
Answer (623)
Sol. $\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{t}}}$
$=\frac{2.303}{2.011 \times 10^{-3}} \log \frac{7}{2}$
$=\frac{2.303 \times 10^{3}}{2.011}(.845-.301)$
$=622.99$
$\approx 623 \mathrm{sec}$.
57. When 2 litre of ideal gas expands isothermally into vacuum to a total volume of 6 litre, the change in internal energy is \qquad J. (Nearest integer)

Answer (0)

Sol. For isothermal process of an ideal gas; $\Delta \mathrm{E}=0$
58. The number of electrons involved in the reduction of permanganate of manganese dioxide in acidic medium is \qquad .

Answer (3)

Sol. $3 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
59. 600 mL of 0.01 M HCl is mixed with 400 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The pH of the mixture is \qquad $\times 10^{-2}$. (Nearest integer)
[Given $\log 2=0.30$

$$
\log 3=0.48
$$

$$
\log 5=0.69
$$

$$
\log 7=0.84
$$

$$
\log 11=1.04]
$$

Answer (186)
Sol. $\left[H^{+}\right]=\frac{6+8}{1000}=14 \times 10^{-3}$

$$
\begin{aligned}
\mathrm{pH} & =3-\log 14 \\
& =3-.3-.84 \\
& =1.86=186 \times 10^{-2}
\end{aligned}
$$

60. A trisubstituted compound ' A ', $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$ gives neutral FeCl_{3} test positive. Treatment of compound ' A ' with NaOH and $\mathrm{CH}_{3} \mathrm{Br}$ gives $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$, with hydroiodic acid gives methyl iodide and with hot conc. NaOH gives a compound $\mathrm{B}, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$. Compound ' A ' also decolorises alkaline KMnO_{4}. The number of π bond/s present in the compound ' A ' is \qquad .

Answer (4)

Sol. A : $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2}$
$D U$ of $A=\frac{22-12}{2}=5$
1 DU is due to Ring (Benzene ring)
4π-bonds will be there
(3π-bonds in ring and 1π-bond outside ring) as it decolorises alkaline KMnO_{4}.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors and \hat{n} is a unit vector perpendicular to \vec{c} such that $\vec{a}=\alpha \vec{b}-\hat{n},(\alpha \neq 0) \quad$ and $\vec{b} \cdot \vec{c}=12, \quad$ then $|\vec{c} \times(\vec{a} \times \vec{b})|$ is equal to
(1) 9
(2) 6
(3) 12
(4) 15

Answer (3)

Sol. $\hat{n}=\alpha \vec{b}-\vec{a}$

$$
\begin{aligned}
& \vec{c} \times(\vec{a} \times \vec{b})=(\vec{c} \cdot \vec{b}) \vec{a}-(\vec{c} \cdot \vec{a}) \vec{b} \\
&=12 \vec{a}-(\vec{c} \cdot(\alpha \vec{b}-\hat{n})) \vec{b} \\
&=12 \vec{a}-(12 \alpha-0) \vec{b} \\
&=12(\vec{a}-\alpha \vec{b}) \\
& \therefore \quad|\vec{c} \times(\vec{a} \times \vec{b})|=12
\end{aligned}
$$

62. If the coefficient of x^{15} in the expansion of $\left(a x^{3}+\frac{1}{b x^{1 / 3}}\right)^{15}$ is equal to the coefficient of x^{-15} in the expansion of $\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$, where a and b are positive real numbers, then for each such ordered pair (a, b)
(1) $a b=1$
(2) $a=b$
(3) $a=3 b$
(4) $a b=3$

Answer (1)
Sol. For $\left(a x^{3}+\frac{1}{b x^{\frac{1}{3}}}\right)$
$T_{r+1}={ }^{15} C_{r}\left(a x^{3}\right)^{15-r}\left(\frac{1}{b x^{\frac{1}{3}}}\right)^{1}$
$\therefore \quad$ For $x^{15} \rightarrow 3(15-r)-\frac{r}{3}=15$
$\Rightarrow \quad 30=\frac{10 r}{3} \Rightarrow r=9$
Similarly, for $\left(a x^{\frac{1}{3}}-\frac{1}{b x^{3}}\right)^{15}$
$T_{r+1}={ }^{15} C_{r}\left(a x^{\frac{1}{3}}\right)^{15-r}\left(-\frac{1}{b x^{3}}\right)^{2}$
$\therefore \quad$ For $x^{-15} \rightarrow \frac{15-r}{3}-3 r=-15 \Rightarrow r=6$
$\therefore \quad{ }^{15} C_{9} \frac{a^{6}}{b^{9}}={ }^{15} C_{6} \frac{a^{9}}{b^{6}} \Rightarrow a b=1$
63. The number of points on the curve $y=54 x^{5}-135 x^{4}$ $-70 x^{3}+180 x^{2}+210 x$ at which the normal lines are parallel to $x+90 y+2=0$ is
(1) 4
(2) 3
(3) 2
(4) 0

Answer (1)
Sol. $y^{\prime}=270 x^{4}-540 x^{3}-210 x^{2}+360 x+210$

$$
\text { Slope of normal }=-\frac{1}{90}
$$

\therefore Slope of tangent $=90$
$\therefore \quad$ Number of normal will be number of solutions of

$$
270 x^{4}-540 x^{3}-210 x^{2}+360 x+210=90
$$

$\Rightarrow 9 x^{4}-18 x^{3}-7 x^{2}+12 x+4=0$
$\therefore \quad x=1,2,-\frac{1}{3},-\frac{2}{3}$ are roots
64. The line Λ_{1} passes through the point $(2,6,2)$ and is perpendicular to the plane $2 x+y-2 z=10$. Then the shortest distance between the line 1_{1} and the line $\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$ is
(1) $\frac{19}{3}$
(2) $\frac{13}{3}$
(3) 9
(4) 7

Answer (3)

Sol. Equation of $l_{1}=\frac{x-2}{2}=\frac{y-6}{1}=\frac{z-2}{-2}$
Shortest distance with $\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$ is
S.d $=\left|\frac{\begin{array}{ccc}3 & 10 & 2 \\ 2 & 1 & -2 \\ 2 & -3 & 2 \\ \mid-4 \hat{i}-8 \hat{j}-8 \hat{k}\end{array}\left|=\left|\frac{(-12)-10(8)+2(-8)}{12}\right|\right.}{}\right|$

$$
=9 \text { units }
$$

65. Let $y=x+2,4 y=3 x+6$ and $3 y=4 x+1$ be three tangent lines to the circle $(x-h)^{2}+(y-k)^{2}=r^{2}$. Then $h+k$ is equal to
(1) $5(1+\sqrt{2})$
(2) 5
(3) 6
(4) $5 \sqrt{2}$

Answer (2)
Sol.

$(h, k)=\left(\frac{5.5+5(-2)+14 \sqrt{2}}{10+7 \sqrt{2}}, \frac{35+21 \sqrt{2}}{10+7 \sqrt{2}}\right.$
$h+k=\frac{50+35 \sqrt{2}}{10+7 \sqrt{2}}=5$
66. Among the statements:
$(S 1) \quad((p \vee q) \Rightarrow r) \Leftrightarrow(p \Rightarrow r)$
$(S 2) \quad((p \vee q) \Rightarrow r) \Leftrightarrow((p \Rightarrow r) \vee(q \Rightarrow r))$
(1) only (S1) is a tautology
(2) only ($S 2$) is a tautology
(3) neither ($S 1$) nor ($S 2$) is a tautology
(4) both ($S 1$) and ($S 2$) are tautologies

Answer (3)
Sol. $S_{1}:((p \vee q) \Rightarrow r) \Leftrightarrow(p \Rightarrow r)$
$S_{2}:((p \vee q) \Rightarrow r) \Leftrightarrow((p \Rightarrow r) \vee(q \Rightarrow r))$
In S_{1} : If $p=\mathrm{F}, q=T, r=\mathrm{F}$ then S_{1} is false
In S_{2} : if $P=T, q=F, r=F$ then S_{2} is false
$\therefore \quad$ Neither $S 1$ nor $S 2$ is a tautology
67. The coefficient of x^{301} in $(1+x)^{500}+x(1+x)^{499}$ $+x^{2}(1+x)^{498}+\ldots \ldots+x^{500}$ is
(1) ${ }^{501} C_{302}$
(2) ${ }^{501} C_{200}$
(3) ${ }^{500} C_{300}$
(4) ${ }^{500} C_{301}$

Answer (2)

Sol. ${ }^{500} C_{301}+{ }^{499} C_{300}+{ }^{498} C_{299}+\ldots+{ }^{199} C_{0}$
$={ }^{500} C_{199}+{ }^{499} C_{199}+{ }^{498} C_{199}+\ldots+{ }^{199} C_{89}$
$={ }^{501} C_{200}$
68. The minimum number of elements that must be added to the relation $R=\{a, b),(b, c)\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is
(1) 7
(2) 3
(3) 5
(4) 4

Answer (1)
Sol. For symmetric $(b, a),(c, b) \in R$
For transitive $(a, c) \in R$
$\Rightarrow \quad(c, a) \in R$
$(a, b),(b, a) \in R$
$\Rightarrow \quad(a, a) \in R$
$(b, c),(c, b) \in R$
$\Rightarrow \quad(b, b) \in R,(c, c) \in R$
7 elements must be added
69. If $P(h, k)$ be a point on the parabola $x=4 y^{2}$, which is nearest to the point $Q(0,33)$, then the distance of P from the directrix of the parabola $y^{2}=4(x+y)$ is equal to
(1) 4
(2) 6
(3) 8
(4) 2

Answer (2)
Sol. Equation of normal
$y=-t x+2 \cdot \frac{1}{16} t+\frac{1}{16} t^{3}$
$33=\frac{t}{8}+\frac{t^{3}}{16}$
$\Rightarrow t^{3}+2 t=528$
$t=8$

$$
\left(a t^{2}, 2 a t\right)=(4,1)
$$

Distance from $x=-2$
70. If [t] denotes the greatest integer $\leq t$, then the value of $\frac{3(e-1)}{e} \int_{1}^{2} x^{2} e^{[x]+\left[x^{3}\right]} d x$ is
(1) $e^{7}-1$
(2) $e^{8}-1$
(3) $e^{9}-e$
(4) $e^{8}-e$

Answer (4)

Sol. $I=\frac{3(e-1)}{e} \int_{1}^{2} x^{2} e^{[x]+\left[x^{3}\right]} d x$
$=\frac{3(e-1)}{e} \int_{1}^{2} x^{2} e^{1+\left[x^{3}\right]} d x \quad(\because[x]=1$ when $x \in(12))$
$=3(e-1) \int_{1}^{2} x^{2} e^{\left[x^{3}\right]} d x$
Let $x^{3}=t$
$I=(e-1) \int_{1}^{8} e^{[t]} d t$
$=\left(e^{-1}\right)\left(e^{1}+e^{2}+e^{3}+\ldots+e^{7}\right)$
$=(e-1) e \frac{\left(e^{7}-1\right)}{e-1}$
$=e^{8}-e$
71. Let a unit vector $\widehat{O P}$ makes angles α, β, γ with the positive directions of the co-ordinate axes $O X, O Y$, $O Z$ respectively, where $\beta \in\left(0, \frac{\pi}{2}\right)$. If $\widehat{O P}$ is perpendicular to the plane through points $(1,2,3)$, $(2,3,4)$ and $(1,5,7)$, then which one of the following is true?
(1) $\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\gamma \in\left(0, \frac{\pi}{2}\right)$
(2) $\alpha \in\left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in\left(0, \frac{\pi}{2}\right)$
(3) $\alpha \in\left(\frac{\pi}{2}, \pi\right)$ and $\gamma \in\left(\frac{\pi}{2}, \pi\right)$
(4) $\alpha \in\left(0, \frac{\pi}{2}\right)$ and $\gamma \in\left(\frac{\pi}{2}, \pi\right)$

Answer (3)

Sol. Let $A \equiv(1,2,3), B \equiv(2,3,4), C \equiv(1,5,7)$
$\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}=\left|\begin{array}{lll}i & j & k \\ 1 & 1 & 1 \\ 0 & 3 & 4\end{array}\right|$
$=\hat{i}-4 \hat{j}+3 \hat{k}$
$\widehat{O P}=\frac{ \pm(\hat{i}-4 \hat{j}+3 \hat{k})}{\sqrt{26}}$
Since $\cos \beta>0$, take - sign
$\widehat{O P}=\frac{\hat{i}-4 \hat{j}+3 \hat{k}}{\sqrt{26}}$
$\Rightarrow \cos \alpha<0, \cos \gamma<0$
$\alpha, \gamma \in\left(\frac{\pi}{2}, \pi\right)$
72. Suppose $f: \mathbb{R} \rightarrow(0, \infty)$ be a differentiable function such that $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in \mathbb{R}$. If $f(3)=320$, then $\sum_{n=0}^{5} f(n)$ is equal to
(1) 6825
(2) 6525
(3) 6875
(4) 6575

Answer (1)
Sol. $5 f(x+y)=f(x) \cdot f(y)$

$$
5 f(3)=f(1) \cdot f(2)
$$

$$
5 f(2)=(f(1))^{2} \quad f(10)=5
$$

$f(1)=20$

$$
\begin{aligned}
& \Rightarrow \quad f(1) \cdot \frac{(f(1))^{2}}{5}=1600 \\
& \begin{aligned}
\sum_{n=0}^{5} f(n) & =f(0)+20+80+320+1280+5120 \\
& =1750+5120 \\
& =6825
\end{aligned}
\end{aligned}
$$

73. Let $A=\left(\begin{array}{ll}m & n \\ p & q\end{array}\right), d=|A| \neq 0$ and $|A-d(\operatorname{Adj} A)|=0$.

Then
(1) $(1+d)^{2}=m^{2}+q^{2}$
(2) $(1+d)^{2}=(m+q)^{2}$
(3) $1+d^{2}=(m+q)^{2}$
(4) $1+d^{2}=m^{2}+q^{2}$

Answer (2)

Sol. $\left|A-d\left(\begin{array}{lr}q & -n \\ -p & m\end{array}\right)\right|=0$
$\left|\begin{array}{ll}m-q d & n(1+d) \\ p(1+d) & q-m d\end{array}\right|=0$
$(m-q d)(q-m d)=n p(1+d)^{2}$
$m q-\left(q^{2}+m^{2}\right) d+q m d^{2}=n p\left(1+d^{2}\right)+2 n p d$
$\mathrm{d}^{2}(m q-n p)+1(m q-n p)=\left(2 n p+m^{2}+q^{2}\right) d$
$\left(d^{2}+1\right)(m q-n p)=(2 n p+m+a) d$
$d^{2}+1=2 n p+m^{2}+q^{2}$
$2 d=2 m q-2 n p$
$\Rightarrow(1+d)^{2}=(m+q)^{2}$
74. If $\tan 15^{\circ}+\frac{1}{\tan 75^{\circ}}+\frac{1}{\tan 105^{\circ}}+\tan 195^{\circ}=2 a$, then the value of $\left(a+\frac{1}{a}\right)$ is
(1) 4
(2) 2
(3) $4-2 \sqrt{3}$
(4) $5-\frac{3}{2} \sqrt{3}$

Answer (1)

Sol. $\tan 15^{\circ}+\tan 15^{\circ}-\tan 1^{\circ}+\tan 1^{\circ}$

$$
\begin{aligned}
& =2 \tan 15^{\circ} \\
& =2(2-\sqrt{3})=2 a \Rightarrow a=2-\sqrt{3} \\
& \therefore \frac{1}{a}+a \Rightarrow(2+\sqrt{3})+(2-\sqrt{3})=4
\end{aligned}
$$

75. Let the system of linear equations
$x+y+k z=2$
$2 x+3 y-z=1$
$3 x+4 y+2 z=k$
have infinitely many solutions. Then the system
$(k+1) x+2(k-1) y=7$
$(2 k+1) x+(k+5) y=10$
has:
(1) Unique solution satisfying $x+y=1$
(2) Unique solution satisfying $x-y=1$
(3) Infinitely many solutions
(4) No solution

Answer (1)
Sol. $x+y+k z=2$
$2 x+3 y-z=1$
$3 x+4 y+2 z=k$
(1) $+(2)$
$3 x+4 y+z(k-1)=3$
Comparing with (3)
$k=3$
Now, $4 x+5 y=7 \quad \Rightarrow 3 x+3 y=3$
$7 x+8 y=10$
as $\frac{4}{7} \neq \frac{5}{8}$
$\therefore \quad$ unique solution satisfying $x+y=1$
76. If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x}$ $\tan x=1, x \in\left(0, \frac{\pi}{2}\right)$, is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where α, β are integers, then $\alpha+\beta$ is equal to
(1) 6
(2) 5
(3) 4
(4) 3

Answer (3)

Sol. $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1$

$$
\begin{aligned}
& \Rightarrow \log _{\cos x} \cot x-4 \log _{\sin x} \cot x=1 \\
& \Rightarrow 1-\log _{\cos x} \sin x-4-4 \log _{\sin x} \cos x=1
\end{aligned}
$$

Let $\log _{\cos x} \sin x=t$
$t+\frac{4}{t}=4$
$\Rightarrow t=2$
$\sin x=\cos ^{2} x$
$\Rightarrow \sin x=1-\sin ^{2} x$

$$
\Rightarrow \sin ^{2} x+\sin x^{-1}=0
$$

$$
\Rightarrow \quad \sin x=\frac{-1 \pm \sqrt{5}}{2}
$$

as $x \in\left(0, \frac{\pi}{2}\right)$
$\sin x=\frac{\sqrt{5}-1}{2}$
$x=\sin ^{-1}\left(\frac{-1+\sqrt{5}}{2}\right)$

$$
\Rightarrow \alpha=-1, \beta=5
$$

$$
\alpha+\beta=4
$$

77. A straight line cuts off the intercepts $O A=a$ and $O B=b$ on the positive direction of x-axis and y-axis respectively. If the perpendicular from origin O to this line makes an angle of $\frac{\pi}{6}$ with positive direction of y-axis and the area of $\triangle O A B$ is $\frac{98}{3} \sqrt{3}$, then $a^{2}-b^{2}$ is equal to
(1) 196
(2) $\frac{196}{3}$
(3) $\frac{392}{3}$
(4) 98

Answer (3)

Sol. $\frac{1}{2} a b=\frac{98 \sqrt{3}}{3}$

$\Rightarrow \sqrt{3} a b=196$

$$
\begin{align*}
& O P=O B \cos 30^{\circ}=O A \cos 60^{\circ} \tag{i}\\
\Rightarrow & \frac{b \sqrt{3}}{2}=\frac{a}{2} \\
\Rightarrow & \sqrt{3} b=a \tag{ii}
\end{align*}
$$

By (i) and (ii)
$a^{2}=196$
$a=14$
$b^{2}=\frac{a^{2}}{3}$
$a^{2}-b^{2}=\frac{2 a^{2}}{3}=\frac{392}{3}$
78. If $a_{n}=\frac{-2}{4 n^{2}-16 n+5}$, then $a_{1}+a_{2}+\ldots .+a_{25}$ is equal to
(1) $\frac{49}{138}$
(2) $\frac{52}{147}$
(3) $\frac{51}{144}$
(4) $\frac{50}{141}$

Answer (4)

Sol. $\sum_{i=1}^{25} a_{i}=\sum \frac{-2}{4 n^{2}-16 n+15}=\sum \frac{-2}{(2 n-5)(2 n-3)}$
$=\sum_{i=1}^{25}\left(\frac{1}{2 n-3}-\frac{1}{2 n-5}\right)$
$=\left[\left(\frac{1}{-1}-\frac{1}{-3}\right)+\left(\frac{1}{1}-\frac{1}{-1}\right)+\left(\frac{1}{3}-\frac{1}{1}\right) \cdots .\right.$.
$=\frac{1}{2(25)-3}+\frac{1}{3}=\frac{50}{141}$
79. Let the solution curve $y=y(x)$ of the differential equation

$$
\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{3 / 2}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\}
$$

pass through the origin. Then $y(1)$ is equal to
(1) $\exp \left(\frac{1-\pi}{4 \sqrt{2}}\right)$
(2) $\exp \left(\frac{4-\pi}{4 \sqrt{2}}\right)$
(3) $\exp \left(\frac{4+\pi}{4 \sqrt{2}}\right)$
(4) $\exp \left(\frac{\pi-4}{4 \sqrt{2}}\right)$

Answer (2)
Sol. $\frac{d y}{d x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{1+x^{6}}}\right\}$

$$
I F=e^{-\int \frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{\frac{3}{2}}} d x}
$$

Let $\tan ^{-1} x^{3}=t \Rightarrow \frac{3 x^{2}}{1+x^{6}} d x=d t$
$\Rightarrow I F=e^{-\int \frac{\tan t}{\sec t} \cdot t d t}=e^{-\int \sin t \cdot t d t}=e^{t \cos t-\sin t}$
$\Rightarrow I F=e^{\frac{\tan ^{-1}\left(x^{3}\right)}{\sqrt{1+x^{6}}}-\frac{x^{3}}{\sqrt{1+x^{6}}}}$
\therefore Solution is

$$
\begin{aligned}
& y \cdot e^{\frac{\tan ^{-1} x^{3}}{\sqrt{1+x^{6}}}-\frac{x^{3}}{\sqrt{1+x^{6}}}}=\int 2 x d x+c \\
\Rightarrow & y \cdot e^{\frac{\tan ^{-1} x^{3}-x^{3}}{\sqrt{1+x^{6}}}}=x^{2}+c \\
& y(0)=0 \Rightarrow c=0
\end{aligned}
$$

$x=1$

$$
\begin{gathered}
y \cdot e^{\frac{\frac{\pi}{4}-1}{\sqrt{2}}}=1 \\
\Rightarrow \quad y=e^{\frac{1-\frac{\pi}{4}}{\sqrt{2}}} \\
\Rightarrow \quad y=e^{\frac{4-\pi}{4 \sqrt{2}}}
\end{gathered}
$$

80. If an unbiased die, marked with $-2,-1,0,1,2,3$ on its faces, is thrown five times, then the probability that product of the outcomes is positive is:
(1) $\frac{881}{2592}$
(2) $\frac{440}{2592}$
(3) $\frac{27}{288}$
(4) $\frac{521}{2592}$

Answer (4)

Sol. ${ }^{5} C_{0} \times 3^{5}=243$
${ }^{5} C_{2} \times 2^{2} \times 3^{3}=1080$
${ }^{5} C_{4} \times 2^{4} \cdot 3=240$
\therefore required probability
$=\frac{243+1080+240}{6 \times 6 \times 6 \times 6 \times 6}=\frac{521}{2592}$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
81. Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of S, such that $f(n) \subset f(m)$ where $n<m$ is
\qquad -.
Answer (3240)

Sol. $\because S=\{1,2,3,4,5,6\}$
and $P(S)=\{\phi,\{1\},\{2\}, \ldots,\{1,2,3,4,5,6\}\}$
$f(n)$ corresponding a set having m elements which belongs to $P(S)$, should be a subset of $f(n+1)$, so $f(n+1)$ should be a subset of $P(S)$ having at least $m+1$ elements.
Now if $f(1)$ has one element then $f(2)$ has $3, f(3)$ has 3 and so on and $f(6)$ has 6 elements. Total number of possible functions $=6!=720 \ldots(1)$ if $f(1)$ has no elements (i.e. null set ϕ) then

Each index number represents the number of elements in respective rows
Taking every series of arrow and counting number of such possible functions (sets)

$$
\begin{align*}
& ={ }^{6} C_{2} \times{ }^{4} C_{1} \times{ }^{3} C_{1} \times{ }^{2} C_{1}+{ }^{6} C_{1} \times{ }^{5} C_{2} \times{ }^{3} C_{1} \times{ }^{2} C_{1} \\
& +{ }^{6} C_{1} \times{ }^{5} C_{1} \times{ }^{4} C_{2} \times{ }^{2} C_{1}+{ }^{6} C_{1} \times{ }^{5} C_{1} \times{ }^{4} C_{1} \times{ }^{3} C_{2} \\
& +{ }^{6} C_{1} \times{ }^{5} C_{1} \times{ }^{4} C_{1} \times{ }^{3} C_{1} \times{ }^{2} C_{2}+{ }^{6} C_{1} \times{ }^{5} C_{1} \times{ }^{4} C_{1} \times{ }^{3} C_{1} \times{ }^{2} C_{1} \\
& =2520 \tag{2}
\end{align*}
$$

From (1) and (2) : Total number of functions

$$
\begin{aligned}
& =2520+720 \\
& =3240
\end{aligned}
$$

82. Number of 4-digit numbers (the repeation of digits is allowed) which are made using the digits $1,2,3$ and 5 , and are divisible by 15 , is equal to \qquad

Answer (21)

Sol. Digits 1, 2, 3, 5 and number should be divisible by 15 (i.e., divisible by both 3 and 5)
So,

Case-I: $5 \rightarrow 1,2 \rightarrow 1,1 \rightarrow 2=\frac{3!}{2!}=3$

$$
\begin{aligned}
& 5 \rightarrow 1,3 \rightarrow 1,2 \rightarrow 2=\frac{3!}{2!}=3 \\
& 5 \rightarrow 1,3 \rightarrow 2,1 \rightarrow 1=\frac{3!}{2!}=3
\end{aligned}
$$

Case-II: $5 \rightarrow 2,3 \rightarrow 1,2 \rightarrow 1=3!=6$

$$
5 \rightarrow 2,1 \rightarrow 2=\frac{3!}{2!}=3
$$

Case-III: $5 \rightarrow 3,3 \rightarrow 1=\frac{3!}{2!}=3$
\therefore Total no. $=21$
83. If $\lambda_{1}<\lambda_{2}$ are two values of λ such that the angle between the planes $P_{1}: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7$ and $P_{2}: \vec{r}(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$ is $\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right)$, then the square of the length of perpendicular from the point $\left(38 \lambda_{1}, 10 \lambda_{2}, 2\right)$ to the plane P_{1} is \qquad .

Answer (315)

Sol. $P_{1}: \vec{r} \cdot(3 \hat{i}-5 \hat{j}+\hat{k})=7$
$P_{2}: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9$
Let angle between P_{1} and P_{2} is θ
Then $\cos \theta=\frac{3 \lambda-5-3}{\sqrt{35} \sqrt{\lambda^{2}+10}}$
But $\sin \theta=\frac{2 \sqrt{6}}{5}$
$\therefore \frac{(3 \lambda-8)^{2}}{35\left(\lambda^{2}+10\right)}=1-\frac{24}{25}$
$\Rightarrow 5\left(9 \lambda^{2}+64-48 \lambda\right)=7 \lambda^{2}+70$
$\Rightarrow 38 \lambda^{2}-240 \lambda+250=0$
$\Rightarrow 19 \lambda^{2}-120 \lambda+125=0$
$\Rightarrow(19 \lambda-25)(\lambda-5)=0$
$\therefore \quad \lambda_{1}=\frac{25}{19}, \lambda_{2}=5$
So, point (50, 50, 2)
$\therefore \quad d=\frac{|150-250+2-7|}{\sqrt{35}}=315$
84. Let $\sum_{n=0}^{\infty} \frac{n^{3}((2 n)!)+(2 n-1)(n!)}{(n!)((2 n)!)}=a e+\frac{b}{e}+c$,
where $a, b, c \in \mathbb{Z}$ and $e=\sum_{n=0}^{\infty} \frac{1}{n!}$ Then $a^{2}-b+c$ is equal to \qquad -
Answer (26)
Sol. $\sum_{n=0}^{\infty} \frac{n^{3}(2 n!)+(2 n-1)(n!)}{n!\cdot(2 n)!}$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{n^{3}}{n!}+\frac{2 n-1}{2 n!} \\
& =\sum_{n=0}^{\infty} \frac{3}{(n-2)!}+\frac{1}{(n-3)!}+\frac{1}{(n-1)!}+\frac{1}{(2 n-1)!}-\frac{1}{(2 n)!}
\end{aligned}
$$

JEE (Main)-2023 : Phase-1 (30-01-2023)-Morning
$=3 e+e+e-\frac{1}{e}$
$=5 e-\frac{1}{e}$
$\therefore \quad a=5, b=-1, c=0$
$\therefore \quad a^{2}-b+c=26$
85. Let $z=1+i$ and $z_{1}=\frac{1+\overline{i z}}{\bar{z}(1-z)+\frac{1}{z}}$. Then $\frac{12}{\pi} \arg \left(z_{1}\right)$ is equal to \qquad .

Answer (09)

Sol. $z=1+i$

$$
\begin{aligned}
z_{1} & =\frac{1+\bar{z}}{\bar{z}(1-z)+\frac{1}{z}} \\
& =\frac{z(1+\bar{z})}{|z|^{2}(1-z)+1} \\
& =\frac{(1+i)(1+i(1-i))}{2(1-1-i)+1} \\
z_{1} & =1-i
\end{aligned}
$$

$$
\arg z_{1}=\tan ^{-1}\left(\frac{-1}{1}\right)=\frac{3 \pi}{4}
$$

$$
\frac{12}{\pi} \arg \left(z_{1}\right)=\frac{3 \pi}{4} \cdot \frac{12}{\pi}
$$

$$
=9
$$

86. Let $f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in R-\left\{\frac{-3}{2}\right\}$

For $n \geq 2$, define $f^{n}(x)=f^{1}$ of ${ }^{n-1}(x)$.
If $f^{5}(x)=\frac{a x+b}{b x+a}, \operatorname{gcd}(a, b)=1$, then $a+b$ is equal to \qquad -

Answer (3125)

Sol. $f^{\prime}(x)=\frac{3 x+2}{2 x+3} x \in R-\left\{-\frac{3}{2}\right\}$
$f^{5}(x)=f_{o} f_{o} f_{o} f_{o} f(x)$
$f_{o} f(x)=\frac{13 x+12}{12 x+13}$
$f_{o} f_{o} f_{o} f_{0} f(x)=\frac{1563 x+1562}{1562 x+1563}$
$\equiv \frac{a x+b}{b x+a}$
$\therefore \quad a=1563, b=1562$
$=3125$
87. $\lim _{x \rightarrow 0} \frac{48}{x^{4}} \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t$ is equal to \qquad .

Answer (12)

Sol. $\operatorname{limit}_{x \rightarrow 0} \frac{48}{x^{4}} \int_{0}^{x} \frac{t^{3}}{t^{6}+1} d t$.
$\operatorname{limit}_{x \rightarrow 0} \frac{48}{4 x^{3}} \cdot\left(\frac{x^{3}}{x^{6}+1}\right)$
$\operatorname{limit}_{x \rightarrow 0} \frac{12}{x^{6}+1}=12$
88. The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $a+3 b-5$ is equal to

Answer (37)

Sol. $\sum x_{i}=7 \times 8=56$
$\frac{\sum x_{i}^{2}}{n}-\left(\frac{\sum x_{i}}{n}\right)^{2}=16$
$\frac{\sum x_{i}^{2}}{7}-64=16$
$\sum x_{i}^{2}=560$
When 14 is omitted
$\sum x_{i}=56-14=42$
New mean $=a=\frac{\sum x_{i}}{6}=7$
$\sum x_{i}^{2}=560-196=364$
new variance, $b=\frac{\sum x_{i}^{2}}{6}-\left(\frac{\sum x_{i}}{6}\right)^{2}$
$=\frac{364}{6}-49=\frac{35}{3}$
$3 b=35$
$a+3 b-5=7+35-5=37$
89. If the equation of the plane passing through the point $1,1,2$) and perpendicular to the line $x-3 y+$ $2 z-1=0=4 x-y+z$ is $A x+B y+C z=1$, then $140(C-B+A)$ is equal to \qquad .
Answer (15)
Sol. Line of intersection of the planes $x-3 y+2 z-1=$ 0 and $4 x-y+z=0$ is normal (\vec{n}) to the required plane.

$$
\vec{n}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -3 & 2 \\
4 & -1 & 1
\end{array}\right|=-\hat{i}+7 \hat{j}+11 \hat{k}
$$

Equation of plane is
$-x+7 y+11 z=\lambda$
It passes through (1, 1, 2)
$\therefore \lambda=28$
So, the plane is
$-x+7 y+11 z=28$
$\Rightarrow \frac{-1}{28} x+\frac{7}{28} y+\frac{11}{28} z=1$
$A=\frac{-1}{28}, B=\frac{7}{28}, C=\frac{11}{28}$
$140(C-B+A)=15$
90. Let α be the area of the larger region bounded by the curve $y^{2}=8 x$ and the line $y=x$ and $x=2$, which lies in the first quadrant. Then the value of 3α is equal to \qquad -.
Answer (22)
Sol.

$\left.A_{2}=\int_{2}^{8} 2 \sqrt{2} \sqrt{x}-x d x=\frac{4 \sqrt{2}}{3} \cdot x^{\frac{3}{2}}-\frac{x^{2}}{2}\right]_{2}^{8}$
$=\frac{4 \sqrt{2}}{3}(16 \sqrt{2}-2 \sqrt{2})-30$
$=\frac{112}{3}-30=\frac{22}{3}$
$A_{2}>A_{1} \Rightarrow 3 \alpha=22$

