

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Two disc having same moment of inertia about their axis. Thickness is t_1 and t_2 and they have same density. If $\frac{R_1}{R_2} = \frac{1}{2}$, then find $\frac{t_1}{t_2}$.

(1) $\frac{1}{16}$

(2) 16

(3) $\frac{1}{4}$

(4) 4

Answer (2)

Sol. $\pi R^2 t \rho \frac{R^2}{2} = I$

So $\frac{I_1}{I_2} = \frac{t_1 \rho R_1^4}{t_2 \rho R_2^4}$

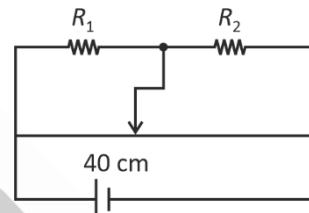
$\Rightarrow \frac{t_1}{t_2} = \left(\frac{R_2}{R_1} \right)^4 = 16$

2. In series R-L circuit, voltage of battery is 10 V. Resistance & inductance are 10 Ω and 10 mH respectively. Find energy stored in the inductor when current reaches $\frac{1}{e}$ times of maximum value

(1) 0.67 mJ (2) 1.33 mJ
 (3) 0.33 mJ (4) 0.50 mJ

Answer (1)

Sol. $\varepsilon = \frac{L i_0^2}{2 e^2}$


$I_0 = \frac{\varepsilon}{R} = 1 A$

$= \frac{1}{2} \times 10^{-2} \times \frac{1}{e^2}$

$= 10^{-2} \times 0.067$

$= 0.67 \text{ mJ}$

3. In a potentiometer null point for two resistances R_1 and R_2 is at 40 cm as shown. If 16 Ω is connected in parallel to R_2 then null point is at 50 cm then R_1 and R_2 are respectively

(1) 16 Ω , 48 Ω

(2) 32 Ω , $\frac{32}{3} \Omega$

(3) $\frac{16}{3} \Omega$, 16 Ω

(4) $\frac{32}{5} \Omega$, 32 Ω

Answer (3)

Sol. $\frac{R_1}{R_2} = \frac{40}{60} = \frac{2}{3}$

$3R_1 = 2R_2$

$\frac{R_1(R_2 + 16)}{16R_2} = \frac{1}{1}$

$R_1 = \frac{R_2 16}{R_2 + 16} = \frac{2R_2}{3}$

$48 = 2R_2 + 32$

$R_2 = 8$

$R_1 = \frac{16}{3}$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

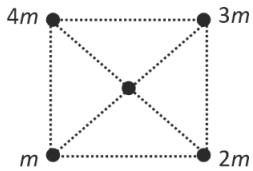
ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

Uttar Pradesh Topper
100
100
in Overall

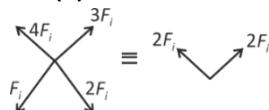
KUSHAGRA
BAINGAHA
AIR 7

Uttar Pradesh Topper
100
100
in Overall


HARSSH
A GUPTA
AIR 15

Telangana Topper
100
100
in Overall

and more...


4. In the given situation force at center on 1 kg mass is F_1 . Now if $4m$ and $3m$ is interchanged the force is F_2 .

Given : $\frac{F_1}{F_2} = \frac{2}{\sqrt{\alpha}}$. Find α .

(1) $\alpha = 5$ (2) $\alpha = 3$
 (3) $\alpha = 7$ (4) $\alpha = 1$

Answer (1)

Sol.

$$F_1 = \frac{2\sqrt{2}Gm}{a^2}$$

$$F_2 = \sqrt{10}F_f = \sqrt{10} \frac{Gm^2}{a^2}$$

$$\frac{F_2}{F_1} = \sqrt{\frac{10}{8}} = \frac{\sqrt{5}}{2}$$

5. Match the column

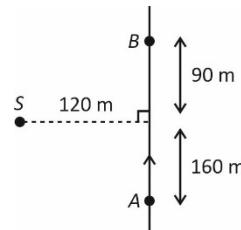
	Column-I		Column-II
(A)	Thermal Conductivity	(P)	$[ML^2T^{-2}K^{-1}]$
(B)	Boltzmann Constant	(Q)	$[M^1L^{-1}T^{-2}]$
(C)	Spring constant	(R)	$[M^1L^1T^{-3}K^{-1}]$
(D)	Surface tension	(S)	$[M^1L^0T^{-2}]$
		(T)	$[M^1L^2T^{-3}K^{-1}]$
		(U)	$[ML^2T^{-2}]$

(1) $A \rightarrow R ; B \rightarrow P ; C \rightarrow S ; D \rightarrow S$
 (2) $A \rightarrow T ; B \rightarrow P ; C \rightarrow U ; D \rightarrow S$
 (3) $A \rightarrow R ; B \rightarrow T ; C \rightarrow Q ; D \rightarrow Q$
 (4) $A \rightarrow T ; B \rightarrow U ; C \rightarrow S ; D \rightarrow Q$

Answer (1)

Sol. Theoretical

6. A simple pendulum with bob (mass m & charge q) is in equilibrium in presence of horizontal electric field E then tension in thread is


(1) $mg + qE$ (2) $\sqrt{m^2g^2 + q^2E^2}$
 (3) $\sqrt{mg + qE}$ (4) $mg + qE \tan\theta$

Answer (2)

Sol. $\vec{T} + \vec{mg} + \vec{qE} = \vec{0}$

$$T = \sqrt{(\vec{mg} + \vec{qE})^2} = \sqrt{m^2g^2 + q^2E^2}$$

7. Detector D moves from A to B and observe the frequencies are differing by 10 Hz. Source is emitting frequency f_0 as shown: Speed of detector is 35 times less than speed of sound. Then f_0 is

(1) 400 Hz (2) 350 Hz
 (3) 250 Hz (4) 150 Hz

Answer (3)

Our Problem *Solvers* shine bright in **JEE 2025**

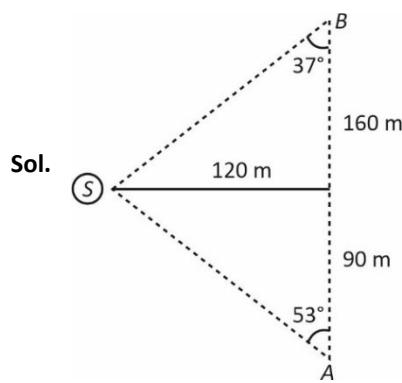
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

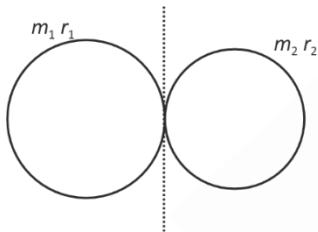
ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall


KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)



$$f_0 \left\{ \frac{C + V \cos 53^\circ}{C} - \frac{C - V \cos 37^\circ}{C} \right\} = 10$$

$$f_0 \left\{ \frac{V}{C} \right\} \left\{ \frac{7}{5} \right\} = 10$$

$$f_0 = \frac{50}{7} \times \frac{C}{V} = 250 \text{ Hz}$$

8. Disk $m_1 = 5 \text{ kg}$ & radius $r_1 = 10 \text{ cm}$ and disk $m_2 = 10 \text{ kg}$ & radius $r_2 = 50 \text{ cm}$ are arranged as shown in figure. Find moment of inertia about an axis through common tangent and parallel to the plane of the disk.

$$(1) \frac{31}{8} \text{ kg m}^2$$

$$(2) \frac{57}{64} \text{ kg m}^2$$

$$(3) \frac{41}{8} \text{ kg m}^2$$

$$(4) \frac{51}{16} \text{ kg m}^2$$

Answer (4)

$$\text{Sol. } \left(\frac{m_1 r_1^2}{4} + m_1 r_1^2 \right) + \left(\frac{m_2 r_2^2}{4} + m_2 r_2^2 \right) = I$$

$$\Rightarrow \left(\frac{1}{100} \times \frac{5}{4} \times 5 \right) + \frac{1}{4} \left(\frac{5}{4} \times 10 \right) = I$$

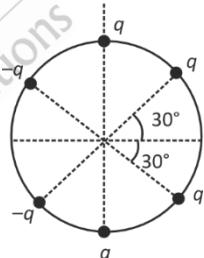
$$\Rightarrow \frac{1}{16} + \frac{50}{16} = \frac{51}{16} \text{ kg m}^2$$

9. In adiabatic process the temperature reduces to $\frac{1}{4}$ th and volume increases to 8 times. Find adiabatic constant of the gas.

$$(1) \frac{3}{4} \quad (2) \frac{5}{7}$$

$$(3) \frac{5}{3} \quad (4) \frac{8}{5}$$

Answer (3)


Sol. $TV^{Y-1} = \text{Constant}$

$$\Rightarrow TV^{Y-1} = \frac{T}{4}(8V)^{Y-1}$$

$$\Rightarrow TV^{Y-1} = \frac{T \cdot V^{Y-1}}{4} (8)^{Y-1}$$

$$\Rightarrow (2)^2 = (2)^{3Y-3} \Rightarrow Y = \frac{5}{3}$$

10. Six charges (four $+q$, two $-q$) are present at circle of radius r and centred at origin as shown. Electric field at origin is

$$(1) \frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} \hat{i} \quad (2) \frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} (-\hat{i})$$

$$(3) \frac{\sqrt{3}q}{2\pi\epsilon_0 r^2} (-\hat{i}) \quad (4) \frac{\sqrt{3}q}{\pi\epsilon_0 r^2} (\hat{i})$$

Answer (3)

Sol.

$$E = \frac{2kq}{r^2} \Rightarrow E_{\text{net}} = E\sqrt{3}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

11. An α -particle with KE 7.9 MeV is projected towards a stationary target nucleus of $Z = 79$. Find the distance of closest approach.

(1) 1.44×10^{-14} (2) 2.88×10^{-14}
 (3) 1.44×10^{-15} (4) 2.88×10^{-15}

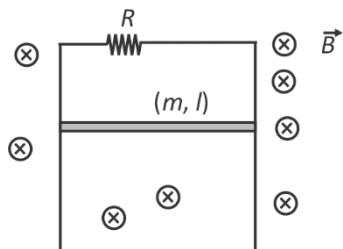
Answer (2)

Sol. $KE = \frac{KZe \times 2e}{d} = 7.9 \times 10^6$

$$d = \frac{9 \times 10^9 \times 2 \times 1.6 \times 10^{-19}}{10^5} = 2.88 \times 10^{-14}$$

12. A planet 'A' having density ρ and radius R has escape velocity = 10 km/sec. Find the escape velocity of a planet B having density and radius both 10% that of plant A.

(1) $\frac{1}{\sqrt{10}}$ (2) $\frac{1}{\sqrt{20}}$
 (3) $\frac{1}{\sqrt{30}}$ (4) $\frac{1}{\sqrt{50}}$


Answer (1)

Sol. $v_e = \sqrt{\frac{Gm \times 2}{R}} = \sqrt{G\rho \frac{8}{3} \pi R^2}$

$$\frac{v_A}{v_B} = \sqrt{\frac{\rho_A}{\rho_B} \left(\frac{R_A}{R_B} \right)} = \sqrt{10} \times 10$$

$$v_B = \frac{v_A}{10\sqrt{10}} = \frac{1}{\sqrt{10}}$$

13. A conducting rod of mass m and length l is moving on a infinite pair of conducting rails as shown. Conducting rails are connected to a resistance R at one end. Motion is in vertical plane and horizontal magnetic field in the region is B . Find terminal speed of rod.

(1) $v_0 = \frac{3mgR}{2B^2l^2}$

(2) $v_0 = \frac{mgR}{2B^2l^2}$

(3) $v_0 = \frac{mgR}{B^2l^2}$

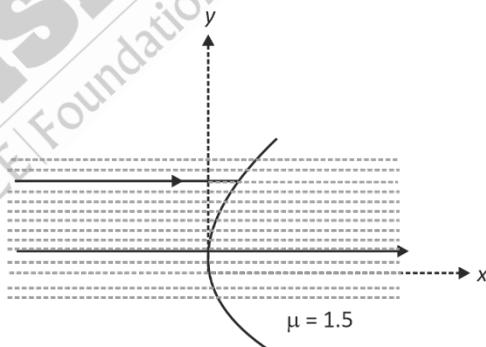
(4) $v_0 = \frac{2mgR}{B^2l^2}$

Answer (3)

Sol. Let v_0 is the terminal speed then power dissipated is

$$\left(\frac{V_0 BI}{R} \right)^2 \cdot R = \frac{V_0^2 B^2 l^2}{R}$$

and power delivered gravity is mgv_0


$$\text{So, } mgv_0 = \frac{B^2 l^2}{R} \cdot V_0^2$$

$$\Rightarrow \frac{mgR}{B^2 l^2} = V_0$$

14. A ray parallel to x axis (principal axis of curved surface).

The x co-ordinate where ray cuts x-axis (in m) is :

(The radius of curvature is 50 cm)

(1) 1.5 (2) 0.5

(3) 1 (4) 2

Answer (1)

Sol. $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R} \Rightarrow \frac{1.5}{v} = \frac{0.5}{0.5}$

$$V = 1.5$$

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

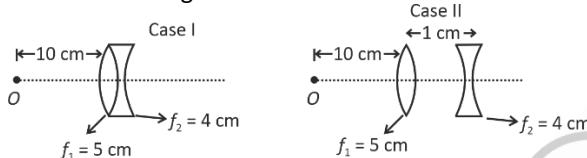
HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

15. A sinusoidal EMW is given by $\vec{E} = 20 \sin\left(\frac{2}{300}x - 10^6 t\right)$ propagating in a non-magnetic material. Dielectric constant of material is

(1) 9×10^4 (2) 3×10^2
 (3) 4 (4) 2

Answer (3)


Sol. $K = \frac{\omega}{V} \Rightarrow \frac{2}{300} = \frac{10^6}{V}$

$$V = \frac{3 \times 10^8}{2}$$

$$\mu = \frac{C}{V} \Rightarrow \mu = 2$$

$$\frac{C}{V} = \frac{\mu \epsilon}{\mu_0 \epsilon_0} \Rightarrow \sqrt{\mu} = 2$$

16. Combination of lenses are arranged in case I and case II as shown in figure.

Magnification in two cases are m_1 and m_2 . Find $\left|\frac{m_1}{m_2}\right|$.

(1) $\frac{5}{6}$ (2) $\frac{4}{3}$
 (3) $\frac{3}{4}$ (4) $\frac{6}{5}$

Answer (1)

Sol. For Case I

$$\frac{1}{f_a} = \frac{1}{5} - \frac{1}{4} = \frac{-1}{20}$$

$$\text{So } \frac{1}{v} + \frac{1}{10} = -\frac{1}{20} \Rightarrow \frac{1}{v} = -\frac{1}{20} - \frac{1}{10} = -\frac{3}{20}$$

$$\text{So } |m_1| = \frac{20}{3 \times 10} = \frac{2}{3}$$

For case II

$$\text{For 1st lens } \frac{1}{v_1} + \frac{1}{f_0} = \frac{1}{5}$$

$$\Rightarrow v_1 = 10 \text{ so, } m'_2 = \frac{10}{-10} = -1$$

So 2nd lens

$$\frac{1}{v_2} - \frac{1}{9} = -\frac{1}{4} \Rightarrow \frac{1}{v_2} = \frac{1}{9} - \frac{1}{4} = \frac{-5}{36}$$

$$\text{So } m''_2 = \left(\frac{36}{-5}\right) \frac{1}{9} = -\frac{4}{5}$$

$$\text{So } m_2 = m'_2 \cdot m''_2 = \left(\frac{4}{5}\right) \times (1) = \frac{4}{5}$$

$$\text{So } \left|\frac{m_1}{m_2}\right| = \frac{2 \times 5}{3 \times 4} = \frac{5}{6}$$

17. Match the column-I with the correct numerical values of energy/heat in column-II (R is universal gas constant)

	Column-I		Column-II
(A)	1 mole of monoatomic ideal gas undergoes polytopic process $PV^{-1/2}$ with $\Delta T = 320$ K find ΔU	(P)	$650 R$
(B)	Find heat supplied to 2 moles of gas having heat capacity as $\frac{5}{2}R$ and $\Delta T = 130$ K	(Q)	$800 R$
(C)	Find the ΔU for 1 mole diatomic gas for $\Delta T = 230$ K	(R)	$480 R$

(1) $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$

(2) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow Q$

(3) $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$

(4) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$

Answer (1)

Sol. ΔU for any process $nC_V\Delta T$

$$(A) \Delta U = 1 \times \frac{3R}{2} \times 320 = 480 R$$

$$(B) \Delta Q = nC_{\text{process}}\Delta T = 2 \times \frac{5R}{2} \times 130 = 650 R$$

$$(C) \Delta U = 1 \times \frac{5}{2}R \times 320 = 800 R$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

18. Statement-I : Fluid exerts pressure on the surface of a solid in contact with it.
 Statement-II : The excess potential energy of molecules at the surface of a liquid leads to surface tension.
 (1) Both are true and statement-II is correct explanation of Statement-I
 (2) Both are true but statement-II is not correct explanation of Statement-I
 (3) Statement-I is true but Statement-II is false
 (4) Statement-II is true but statement-I is false

Answer (2)**Sol.** Theoretical

19. For an object revolving around a planet of mass M and radius R_0 at a distance r from the center of the planet. If area velocity of the object is $10 \text{ km}^2/\text{sec}$. Now if density of the planet increases by $+10\%$ and radius of planet increases by $+10\%$ then find new area velocity at same orbital radius.

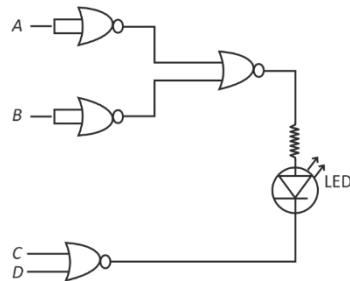
(1) $12.1 \text{ km}^2/\text{sec}$ (2) $10 \text{ km}^2/\text{sec}$
 (3) $15.5 \text{ km}^2/\text{sec}$ (4) $8.5 \text{ km}^2/\text{sec}$

Answer (1)

$$\text{Sol. } T^2 = \frac{4\pi^2 r^3}{GM}$$

$$\text{So } V_{\text{Area}}^2 = \frac{\pi r^2 \cdot \pi r^2 GM}{4\pi^2 r^3} = \frac{GMr}{4}$$

$$\text{So } V_{\text{Area}}^2 = \frac{G}{4} \cdot r \cdot \frac{4}{3} \pi R^3 \rho = \frac{\pi}{3} R^3 \rho Gr$$


Since r is constant so

$$\frac{V_{2(\text{Area})}^2}{V_{1(\text{Area})}^2} = \frac{\frac{110\rho}{100} \left(\frac{11}{10}\right)^3 \cdot R^3}{\rho R^3}$$

$$\Rightarrow V_{2(\text{Area})}^2 = \left(\frac{11}{10}\right)^4 \times 100$$

$$\Rightarrow V_{2(\text{Area})} = 12.1 \text{ km}^2/\text{sec}$$

20. In the given logic circuit shown in the figure, inputs A, B, C , and D are applied as shown. An LED is connected at the output. In which of the following combinations will the LED glow.

(1) $A = 1, B = 1, C = 0, D = 0$
 (2) $A = 1, B = 0, C = 0, D = 0$
 (3) $A = 0, B = 1, C = 1, D = 0$
 (4) $A = 1, B = 1, C = 1, D = 1$

Answer (4)**Sol.** $\overline{A+B}$ $\overline{C+D}$ are two terminals

$AB \overline{C+D}$ LED glows when forward bias

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.
 22.
 23.
 24.
 25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

