

PHYSICS

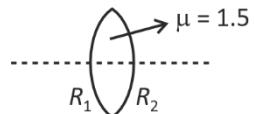
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. For the circuit given below, identify the logic gate.

(1) AND
 (2) OR
 (3) NAND
 (4) NOR


Answer (1)

Sol. Truth table

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Clearly AND Gate.

2. Object is placed at distance 30 cm from lens given below, then distance of image from lens is ($R_1 = 10$ cm, $R_2 = 20$ cm)

(1) 36 cm
 (2) 24 cm
 (3) 20 cm
 (4) 30 cm

Answer (2)

$$\text{Sol. } \frac{1}{f} = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{3}{40}$$

$$\frac{1}{v} - \frac{1}{-30} = \frac{3}{40}$$

$$\Rightarrow \frac{1}{v} = \frac{5}{120}$$

$$v = 24 \text{ cm}$$

3. The position vector is given as $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and if its signs reversed then which of the following physical quantity remains unaffected?

(1) Acceleration
 (2) Velocity
 (3) Displacement
 (4) Torque

Answer (4)

$$\text{Sol. } \vec{r} \times \vec{F} \equiv -\vec{r} \times -\vec{F} \equiv \vec{r}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

© Akash Foundation

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

© Akash Foundation

12. Given that $v = \sqrt{\frac{Y}{P}}$. Find the maximum % error in v .

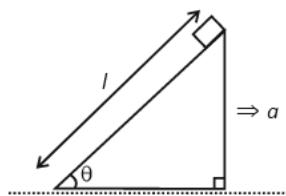
Given that $\frac{\Delta Y}{Y} \times 100 = 1\%$ and $\frac{\Delta P}{P} \times 100 = 0.5\%$

(1) $\frac{3}{2}\%$

(2) $\frac{3}{4}\%$

(3) 1%

(4) $\frac{1}{2}\%$


Answer (2)

Sol. $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta Y}{Y} + \frac{1}{2} \frac{\Delta P}{P}$

So $\left(\frac{\Delta v}{v} \times 100 \right) = \frac{1}{2} \left(\frac{\Delta Y}{Y} \right) \times 100 + \frac{1}{2} \left(\frac{\Delta P}{P} \times 100 \right)$

$\Rightarrow \left(\frac{\Delta v}{v} \times 100 \right) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}\%$

13. Find the time taken by block to reach the ground when released from a top of a wedge of inclination θ and length l , maintained at a constant acceleration ' a ' to the right as shown. (all contacts case smooth and block doesn't loose contact with wedge).

(1) $t = \sqrt{\frac{l}{g \cos^2 \theta + a \sin \theta}}$

(2) $t = \sqrt{\frac{l}{g \sin \theta + a \cos \theta}}$

(3) $t = \sqrt{\frac{2l}{g \sin \theta + a \cos \theta}}$

(4) $t = \sqrt{\frac{l}{2g \cos \theta + a \sin \theta}}$

Answer (3)

Sol. Applying pseudo force on block and resolving forces along incline we get $A = g \sin \theta + a \cos \theta$.

$$\Rightarrow \frac{1}{2} At^2 = l$$

$$\Rightarrow t = \sqrt{\frac{2l}{g \sin \theta + a \cos \theta}}$$

14.

15.

16.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.

22.

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. The plot of $\log_{10}k$ vs $\frac{1}{T}$ gives a straight line. The intercept and slope respectively are

(1) $c = \log A$

$$m = -\frac{E_a}{2.303R}$$

(2) $c = -\frac{E_a}{2.303R}$

$$m = \log A$$

(3) $c = -\log A$

$$m = -\frac{E_a}{2.303R}$$

(4) $c = \log A$

$$m = \frac{E_a}{2.303R}$$

Answer (1)

Sol. $k = Ae^{-\frac{E_a}{RT}}$

$$\log k = \log A - \frac{E_a}{2.303RT}$$

$$y = c + mx$$

$$c = \text{intercept} = \log A$$

$$m = \text{slope} = -\frac{E_a}{2.303R}$$

2. Consider the following electromagnetic waves :

Wavelength of A = 400 nm

Frequency of B = 10^{16} s^{-1}

Wave number of C = 10^4 cm^{-1}

Order of energies is

(1) A > B > C (2) B > A > C
 (3) B > C > A (4) C > A > B

Answer (2)

Sol. $\lambda_A = 400 \times 10^{-9} \text{ m} = 4 \times 10^{-7} \text{ m}$

$$\lambda_B = 3 \times 10^{-8} \text{ m}$$

$$\lambda_C = 10^{-6} \text{ m}$$

$$\lambda_C > \lambda_A > \lambda_B$$

Energy order will be opposite.

3. Which of the following order is correct.

(1) HF > HI > HBr > HCl (Boiling point)
 (2) HF > HI > HBr > HCl (Melting point)
 (3) HI > HF > HBr > HCl (Boiling point)
 (4) HI > HBr > HF > HCl (Melting point)

Answer (1)

	HF	HCl	HBr	HI
B.P.	293	189	206	238
(K)				
MP	190	159	185	222

4. Match the isostructural species

	Column-I		Column-II
(a)	XeO ₃	(p)	BrF ₅
(b)	XeF ₂	(q)	NH ₃
(c)	XeO ₂ F ₂	(r)	I ₃ ⁻
(d)	XeOF ₄	(s)	SF ₄

(1) a – q, b – r, c – s, d – p

(2) a – p, b – q, c – s, d – p

(3) a – q, b – r, c – p, d – s

(4) a – p, b – q, c – r, d – s

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

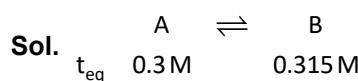
KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

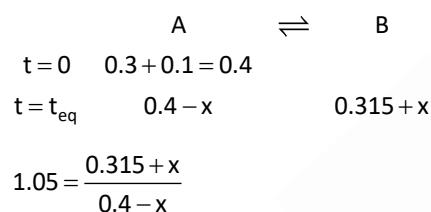
Answer (1)

Sol. XeO_3 and NH_3 are trigonal pyramidal


XeF_2 and I_3^- are linear

XeO_2F_2 and SF_4 are see-saw

XeOF_4 and BrF_5 are square pyramidal


5. Consider a reaction $\text{A} \rightleftharpoons \text{B}$. At 'T' K, the equilibrium concentration of A and B are 0.3 M and 0.315 M. Now, 0.1 mol of A is added to the flask of 1 L, then equilibrium constant and equilibrium concentration of B are

(1) 1.05, 0.35 M (2) 0.95, 0.37 M
(3) 1.05, 0.37 M (4) 0.95, 0.35 M

Answer (3)

$$K_{\text{eq}} = \frac{0.315}{0.3}$$

Now 0.1 mole of A is added,

$$1.05 \times 0.4 - 1.05x = 0.315 + x$$

$$0.42 - 0.315 = 2.05x$$

$$0.105 = 2.05x$$

$$x = 0.051$$

$$[\text{B}] = 0.366 \text{ M}$$

6. Diamagnetic species among the following complexes is

(1) $[\text{MnBr}_4]^{2-}$
(2) $[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$
(3) $[\text{Ni}(\text{CN})_4]^{2-}$
(4) $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$

Answer (3)

Sol. $[\text{MnBr}_4]^{2-} \Rightarrow \text{Mn}^{2+} \Rightarrow 3\text{d}^5$

$\Rightarrow \text{sp}^3$ hybridised

\Rightarrow paramagnetic ($n = 5$)

$[\text{Cu}(\text{H}_2\text{O})_6]^{2+} \Rightarrow \text{Cu}^{2+} \Rightarrow 3\text{d}^9$

$\Rightarrow \text{sp}^3\text{d}^2$ hybridised

\Rightarrow paramagnetic ($n = 1$)

$[\text{Ni}(\text{CN})_4]^{2-} \Rightarrow \text{Ni}^{2+} \Rightarrow 3\text{d}^8$

$\Rightarrow \text{dsp}^2$ hybridised

\Rightarrow diamagnetic ($n = 0$)

$[\text{Ni}(\text{H}_2\text{O})_6]^{2+} \Rightarrow \text{Ni}^{2+} \Rightarrow 3\text{d}^8$

$\Rightarrow \text{sp}^3\text{d}^2$ hybridised

\Rightarrow paramagnetic ($n = 2$)

7. Correct statement about $-\text{NO}_2$ group is

(A) Ring deactivating group in electrophilic substitution
(B) Ring activating group in electrophilic substitution
(C) Activating for aromatic nucleophilic substitution in aryl halides
(D) Deactivating for aromatic nucleophilic substitution in aryl halides.

(1) A, C are correct statement

(2) B, D are correct

(3) A, D are correct

(4) B, C are correct

Answer (1)

Sol. It shows $-R$ and $-I$ effect.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

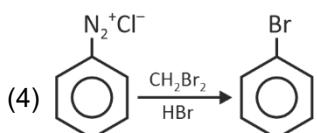
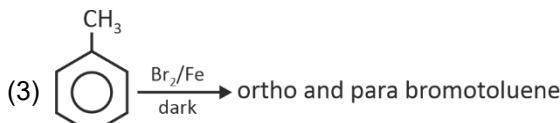
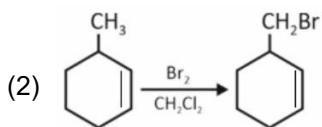
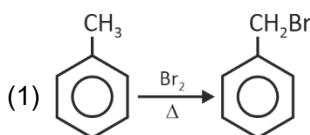
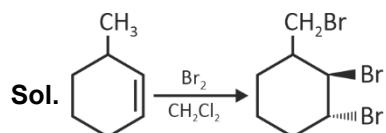
ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

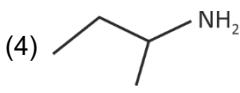
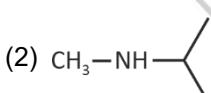
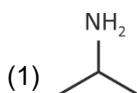
HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

8. The major organic product of which of the following reaction is incorrectly represented?

Answer (2)

9. Consider the following reaction sequence

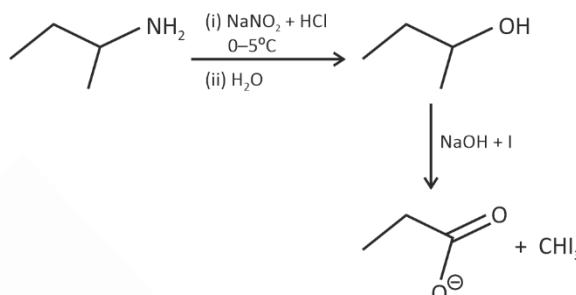
X has %C = 65.75

%H = 15.25

%N = 19

Identify (X)

Answer (4)


Sol. mole molar ratio

$$C = 65.75 \Rightarrow \frac{65.75}{12} = 5.5 = 4$$

$$H = 15.25 \Rightarrow \frac{15.25}{1} = 15.25 = 11$$

$$N = 19 \Rightarrow \frac{19}{14} = 1.35 = 1$$

MF = C₄H₁₁N

10. Which of the following compounds on reacting with Heinsberg reagent form an alkali insoluble product.

(A) Ethanamine
 (B) N-methylaniline
 (C) N-Ethyl-N-Methylaniline
 (D) N-Methylethanamine
 (E) N-Phenylaniline
 (F) Aniline
 (1) A, C, D, E only
 (2) B, C, D & E only
 (3) B, D, and E only
 (4) A, C, F only

Answer (3)

Sol. (A) Ethanamine \Rightarrow CH₃CH₂NH₂ (1°)

(B) N-Methylaniline \Rightarrow Ph-NH-CH₃ (2°)

(C) N-Ethyl-N-methylaniline \Rightarrow Ph-N(CH₃)-CH₂-CH₃ (3°)

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

(D) N-Methyethanamine $\Rightarrow \text{CH}_3\text{CH}_2\text{NHCH}_3$ (2°)
 (E) N-Phenylaniline $\Rightarrow \text{Ph}-\text{NH}-\text{Ph}$ (2°)
 (F) Aniline $\Rightarrow \text{Ph}-\text{NH}_2$ (1°)
 2° Amines react with Heinsberg reagent to form an alkali insoluble product.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The sum of valence e⁻ in element with most and least metallic character among the following is :
 Na, P, Cl, S, O and F

Answer (8)

Sol. Element with most metallic character $\Rightarrow \text{Na}$

Element with least metallic character $\Rightarrow \text{F}$

Sum of valence e⁻ in Na and F = 1 + 7 = 8

22. In 'S' estimation, 0.314 g of organic compound gave 0.4813 g of barium sulphate. What is % of 'S' in organic compound?
 (Report to nearest integer).

Answer (21)

$$\text{Sol. \% of S} = \frac{\frac{0.4813}{233} \times 32}{0.314} \times 100 = 21.05$$

23. Among Sc³⁺, Cr²⁺, Mn³⁺, Co³⁺ number of isoelectronic species are 'n'.
 'n' moles of AgCl is obtained upon reaction with excess of AgNO₃ with 1 mol of Co(en)₂NH₃Cl₃. Number of t_{2g} electrons in the complex are

Answer (6)

Sol. Sc³⁺ $\Rightarrow 3d^0$

Cr²⁺ $\Rightarrow 3d^4$

Mn³⁺ $\Rightarrow 3d^4$

Co³⁺ $\Rightarrow 3d^6$

n = 2

2 mol of AgCl is precipitated.

Hence, complex should be [Co(en)₂(NH₃)Cl]Cl₂
 complex is inner orbital octahedral complex with hybridisation d²sp³

Co³⁺ $\Rightarrow 3d^6$

t_{2g}⁶ e_g⁰

24. An alpha particle and proton are accelerated in a discharge tube under same potential difference of 200 KeV. The de Broglie wavelength of proton is $x\sqrt{2}$ times of de Broglie wavelength of α -particle. The value of x is

Answer (2)

$$\text{Sol. } \lambda = \frac{h}{\sqrt{2m(qV)}}$$

$$\frac{\lambda_p}{\lambda_\alpha} = \left[\frac{\frac{h}{\sqrt{2 \times 1 \times 1 \times 200 \times 1000}}}{\frac{h}{\sqrt{2 \times 4 \times 2 \times 200 \times 1000}}} \right]$$

$$\frac{\lambda_p}{\lambda_\alpha} = \sqrt{8} = 2\sqrt{2}$$

25.

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

4. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{12(3+[x])}{3+[\sin x]+[\cos x]} dx$, where $[]$ represents greatest integer function, is equal to

(1) $3 + 10\pi$ (2) $11\pi + 4$
 (3) $10\pi + 2$ (4) $11\pi + 2$

Answer (4)

Sol.
$$\int_{-\frac{\pi}{2}}^{-1} \frac{12(3-2)}{3-1+0} dx + \int_{-1}^0 \frac{12(3-1)}{3-1+0} dx +$$

$$\int_0^1 \frac{12(3+0)}{3+0+0} dx + \int_1^{\frac{\pi}{2}} \frac{12(3+1)}{3+0+0} dx$$

$$= \int_{-\frac{\pi}{2}}^{-1} 6dx + \int_{-1}^0 12dx + \int_0^1 12dx + \int_1^{\frac{\pi}{2}} 16dx$$

$$= 6\left(-1 + \frac{\pi}{2}\right) + 12(1) + 12(1) + 16\left(\frac{\pi}{2} - 1\right)$$

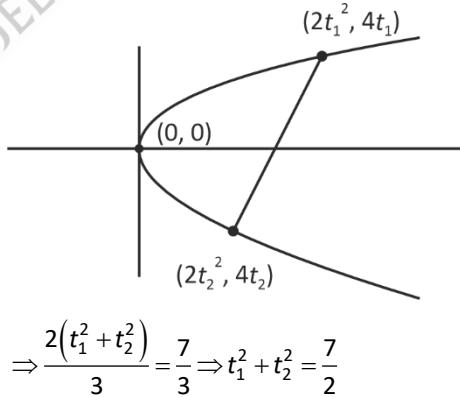
$$= -6 + 3\pi + 12 + 12 + 8\pi - 16$$

$$= 2 + 11\pi$$

5. By the principal of inverse trigonometric function, the value of $\tan\left(2\sin^{-1}\left(\frac{2}{\sqrt{13}}\right) - 2\cos^{-1}\left(\frac{3}{\sqrt{10}}\right)\right)$ is equal to

(1) $\frac{33}{56}$ (2) $\frac{31}{55}$
 (3) $\frac{32}{59}$ (4) $\frac{38}{55}$

Answer (1)


Sol.
$$\begin{aligned} & \because \tan\left(2\sin^{-1}\left(\frac{2}{\sqrt{13}}\right) - 2\cos^{-1}\left(\frac{3}{\sqrt{10}}\right)\right) \\ &= \tan\left(2\tan^{-1}\left(\frac{2}{3}\right) - 2\tan^{-1}\left(\frac{1}{3}\right)\right) \\ &= \tan\left(2\tan^{-1}\left(\frac{\frac{2}{3} - \frac{1}{3}}{1 + \frac{2}{9}}\right)\right) \\ &= \tan\left(2\tan^{-1}\left(\frac{3}{11}\right)\right) \\ &= \tan\left(\tan^{-1}\left(\frac{\frac{6}{11}}{1 - \frac{9}{14}}\right)\right) \\ &= \frac{66}{112} = \frac{33}{56} \end{aligned}$$

6. Let a triangle ABC such that $A = (0, 0)$ and vertices B and C lie on the parabola $y^2 = 8x$ such that $\left(\frac{7}{3}, \frac{4}{3}\right)$ is the centroid of the ΔABC then $(BC)^2$ is equal to

(1) 90 (2) 120
 (3) 150 (4) 110

Answer (2)

Sol.

$$\Rightarrow \frac{2(t_1^2 + t_2^2)}{3} = \frac{7}{3} \Rightarrow t_1^2 + t_2^2 = \frac{7}{2}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100
100
in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100
100
in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100
100
in Overall

and many more...

$$f(x) = \begin{cases} 1+1+1+1, & \text{for } x \in \left(0, \frac{\pi}{2}\right) \\ 1-1-1-1, & \text{for } x \in \left(\frac{\pi}{2}, \pi\right) \\ -1-1+1+1, & \text{for } x \in \left(\pi, \frac{3\pi}{2}\right) \\ -1+1-1-1, & \text{for } x \in \left(\frac{3\pi}{2}, 2\pi\right) \end{cases}$$

Hence range of $f(x) = \{-2, 0, 4\}$

10. **Statement I:** $25^{13} + 20^{13} + 8^{13} + 3^{13}$ is divisible by 7.

Statement II: The integral value of $(7+4\sqrt{3})^{25}$ is an odd number

- Neither statements are correct
- Only statement I is correct
- Only statement II is correct
- Both the statements are correct

Answer (4)

Sol. Statement 1 :

$(25^{13} + 3^{13}) + (20^{13} + 8^{13})$ is divisible by 28 as

$(a+b)|a^n + b^n$ for $n \in$ odd natural numbers

or using congruence modular arithmetic,

$$25^{13} + 3^{13} + 20^{13} + 8^{13}$$

$$\equiv (4^{13} + 3^{13} + (-1)^{13} + 1^{13}) \pmod{7}$$

$$\equiv ((-3)^{13} + 3^{13}) \pmod{7}$$

$$\equiv 0 \pmod{7} \quad \Rightarrow 7 \text{ divides the sum}$$

Statement 2

$$\text{Let } I + f_1 = (7+4\sqrt{3})^{25}$$

$$f_2 = (7-4\sqrt{3})^{25} \text{ as } 0 < 7-4\sqrt{3} < 1$$

$$\Rightarrow I + f_1 + f_2 =$$

$$2\left({}^{25}C_1 (4\sqrt{3})^{24} 7^1 + {}^{25}C_3 (4\sqrt{3})^{22} 7^3 + \dots + {}^{25}C_{25} (4\sqrt{3})^0 7^{25} \right)$$

$$= 2k \text{ for some integer } k$$

$$\Rightarrow \text{Since } f_1 + f_2 \in (0, 2)$$

$$\Rightarrow I + f_1 + f_2 = 2k \Rightarrow I = 2k - 1$$

as only integer in

$$(0, 2) \text{ is } 1 \Rightarrow f_1 + f_2 = 1 \Rightarrow I \text{ is odd.}$$

11. Let $y = y(x)$ be the solution of the differential equation

$$x \frac{dy}{dx} - y = x^2 \cot x, \quad x \in (0, \pi). \quad \text{If } y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}, \text{ then}$$

$$6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right) \text{ is}$$

$$(1) 2\pi \quad (2) -3\pi$$

$$(3) -\pi \quad (4) \pi$$

Answer (3)

$$\text{Sol. } x \frac{dy}{dx} - y = x^2 \cot x$$

$$\frac{dy}{dx} - \frac{y}{x} = x \cot x$$

$$e^{-\int \frac{1}{x} dx} = e^{-\ln x} = \frac{1}{x}$$

$$\frac{y}{x} = \int \cot x dx$$

$$\frac{y}{x} = \int \ln |\sin x| + c$$

$$y = x \ln |\sin x| + cx$$

$$y\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY MAYANK
AIR 36

RUJUL GARG
AIR 41

ARUSH ANAND
AIR 64

SHREYAS LOHIA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

$$\Rightarrow c = 1$$

$$\Rightarrow y = x \ln |\sin x| + x$$

$$6y\left(\frac{\pi}{6}\right) - 8y\left(\frac{\pi}{4}\right)$$

$$= 6\left[\frac{\pi}{6} \ln\left(\frac{1}{2}\right) + \frac{\pi}{6}\right] - 8\left[\frac{\pi}{4} \ln\left(\frac{1}{\sqrt{2}}\right) + \frac{\pi}{4}\right]$$

$$\pi - 2\pi = -\pi$$

12. Let $f(x) = \lim_{\theta \rightarrow 0} \frac{\cos \pi x - (x^{2/0}) \sin(x-1)}{1 + (x^{2/0}) \sin(x-1)}, x \in R$. Then

which of the following is correct.

- (1) f is continuous at $x = 1$ and $f(1) = -1$
- (2) f is discontinuous at $x = -1$ and $f(1) = -1$
- (3) f is continuous at $x = 1$ and $f(1) = 1$
- (4) f is discontinuous at $x = 1$ and $f(1) = 1$

Answer (1)

Sol. $f(x) = \lim_{\theta \rightarrow 0} \frac{\cos \pi x - (x^{2/0}) \sin(x-1)}{1 + (x^{2/0}) \sin(x-1)}, x \in R$

$$f(x) = \begin{cases} \frac{-\sin(x-1)}{(x-1)}, & x > 1 \\ -1, & x = 1 \\ \cos(\pi x), & x < 1 \end{cases}$$

$$\Rightarrow \lim_{x \rightarrow 1} f(x) = -1$$

13. **Statement I:** The function F defined from $R \rightarrow R$

$$F(x) = \frac{x}{1+|x|}$$
 is one-one

Statement II: The function F defined from $R \rightarrow R$

$$F(x) = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$$
 is may-are

- (1) Statement I is correct but statement II is not correct
- (2) Statement I and statement II both are correct
- (3) Statement I is incorrect but statement II is correct
- (4) Both statement are incorrect

Answer (2)

Sol. Statement 1: $F(x) = \frac{x}{1+|x|}$

$$F(x) = \begin{cases} \frac{x}{1-x} & x < 0 \\ \frac{x}{1+x} & x \geq 0 \end{cases}$$

$$F'(x) = \begin{cases} \frac{1}{(1-x)^2} & x < 0 \\ \frac{1}{(1+x)^2} & x \geq 0 \end{cases}$$

$\Rightarrow F(x)$ is increasing in R and $f(x)$ is continuous $\forall x \in R$

$\Rightarrow F(x)$ is one-one

Statement 2: $F(x) = \frac{x^2 + 4x - 30}{x^2 - 8x + 18}$

$$F'(x) = \frac{(x^2 - 8x + 18)(2x + 4) - (x^2 + 4x - 30)(2x - 8)}{(x^2 - 8x + 18)^2}$$

$$= \frac{(2x^3 - 16x^2 + 36x + 4x^2 - 32x + 72) - (2x^3 + 8x^2 - 60x - 8x^2 - 32x + 240)}{(x^2 - 8x + 18)^2}$$

$$= -\frac{12x^2 + 96x - 72}{(x^2 - 8x + 18)^2}$$

$$= -\frac{12(x^2 - 8x + 6)}{(x^2 - 8x + 18)^2}$$

$F'(x)$ will become 0 at 2 distinct points and also $F(x)$ is continuous.

$\Rightarrow F(x)$ is many-one function.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

14. Consider the data:

x :	$4k$	$\frac{30}{7}k$	$\frac{32}{7}k$	$\frac{34}{7}k$	$\frac{36}{7}k$	$\frac{38}{7}k$	$\frac{40}{7}k$	$6k$
$p(x)$:	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{1}{15}$

If $E(x) = \frac{263}{15}$, then $P(x < 20)$ is equal to

(1) $\frac{1}{15}$

(2) $\frac{8}{15}$

(3) $\frac{4}{15}$

(4) $\frac{14}{15}$

Answer (4)

Sol. $E(x) = \frac{263}{15}$

$$\Rightarrow \sum xP(x) = \frac{263}{15}$$

$$\Rightarrow \frac{526}{105}k = \frac{263}{15}$$

$$\Rightarrow k = \frac{7}{2}$$

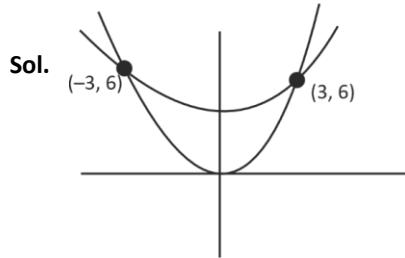
$$P(x < 20) = 1 - P(6k)$$

$$= 1 - P(21)$$

$$= 1 - \frac{1}{15}$$

$$= \frac{14}{15}$$

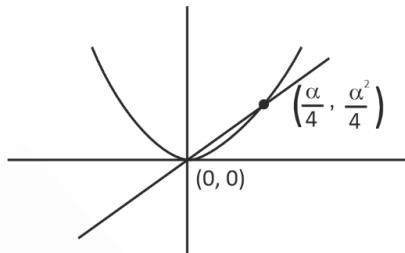
15. Let $P_1 : y = 4x^2$ and $P_2 : x^2 + 27$ be two parabolas. If the area bounded by region enclosed by P_1 and P_2 is 6 times the area bounded by P_1 and $y = \alpha x, \alpha > 0$, then α is equal to


(1) 8

(2) 12

(3) 13

(4) 6


Answer (2)

Sol. $A_1 = \text{Area between } P_1 \text{ and } P_2$

$$\Rightarrow \int_{-3}^3 [(x^2 + 27) - 4x^2] dx = 108$$

$\Rightarrow \text{Area between } P_1 \text{ and } y = \alpha x \text{ is}$

$$\Rightarrow A_2 = \int_0^{\alpha/4} (\alpha x - 4x^2) dx$$

$$= \frac{\alpha x^2}{2} - \frac{\alpha x^3}{3} \Big|_0^{\alpha/4}$$

$$= \frac{\alpha^3}{32} - \frac{4\alpha^3}{64} = \frac{108}{64} = 18$$

$$= \frac{\alpha^3}{32} \left(1 - \frac{2}{3}\right) = 18$$

$$\Rightarrow \alpha^3 = 18 \times 32 \times 3 = 27 \times 64$$

$$\Rightarrow \alpha = 3 \times 4 = 12$$

16. Let Q be the image of the point $P(3, 2, 1)$ in the line

$$\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{1}$$

$$\frac{x-9}{3} = \frac{y-9}{2} = \frac{z-5}{-2}$$

(1) 3

(2) 4

(3) 5

(4) 7

Answer (4)

Our Problem *Solvers* shine bright in **JEE 2025**

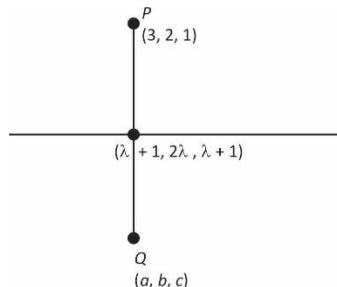
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

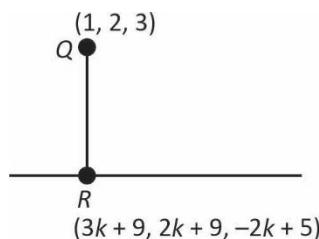

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

Sol.

$PQ \perp$ line

$$\Rightarrow (\lambda+1-3)(1) + (2\lambda-2)(2) + (\lambda+1-1)(1) = 0$$


$$\Rightarrow (\lambda-2) + 4(\lambda-1) + \lambda = 0$$

$$6\lambda = 6 \Rightarrow \lambda = 1$$

\Rightarrow Image point is $Q(1, 2, 3)$.

The Distance of Point Q from a Second Line

$$\frac{x-9}{3} = \frac{y-9}{2} = \frac{z-5}{-2}$$

$$(3k+9-1)(3) + (2k+9-2)(2) + (-2k+5-3)(-2) = 0$$

$$\Rightarrow k = -2$$

$R \equiv (3k+9, 2k+9, -2k+5)$, for $k = -2$

$$\Rightarrow R \equiv (3, 5, 9)$$

$$QR = \sqrt{2^2 + 3^2 + 6^2} = 7$$

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Let $\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$ and B be a 2×2 matrix such that $A^{100} =$

$1008 + I$, then sum of all elements of B^{100} is

Answer (0)

$$\text{Sol. } A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 3.3-4 & -3.4+1.4 \\ 1.3-1 & -4+1 \end{bmatrix} = \begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 2.2+1 & -(4.2) \\ 1.2 & -(2.2-1) \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 7 & -12 \\ 3 & -5 \end{bmatrix}, A^3 = \begin{bmatrix} 11 & -10 \\ 5 & -9 \end{bmatrix}, \dots$$

$$\therefore A^n = \begin{bmatrix} 2n+1 & -4n \\ n & 1-2n \end{bmatrix}$$

$$\Rightarrow A^{100} = \begin{bmatrix} 201 & -400 \\ 100 & -199 \end{bmatrix} = 100B + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 200 & -400 \\ 100 & -200 \end{bmatrix} = 100B$$

$$\Rightarrow B = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}$$

$$B^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow B^{100} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Sum of elements of $B = 0$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

22. Ellipse $\frac{x^2}{144} + \frac{y^2}{169} = 1$ and hyperbola $\frac{x^2}{16} - \frac{y^2}{\lambda^2} = -1$ have same focus and e and L denotes the eccentricity and length of latus rectum of hyperbola then $24(e + L)$ is

Answer (296)

Sol. $\frac{x^2}{144} + \frac{y^2}{169} = 1$

$$e^2 = 1 - \frac{144}{169}$$

$$= \frac{25}{169} \Rightarrow e = \frac{5}{13}$$

$$F_{\text{ellipse}} = \left(0, \pm \frac{5}{13} \times 13 \right)$$

$$= (0, \pm 5)$$

$$\frac{x^2}{16} - \frac{y^2}{\lambda^2} = -1$$

$$e_H^2 = 1 + \frac{16}{\lambda^2}$$

$$F \equiv \left(0, \pm \lambda \sqrt{1 + \frac{16}{\lambda^2}} \right)$$

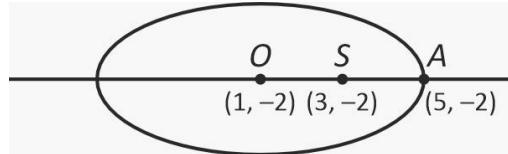
$$\Rightarrow \lambda \sqrt{1 + \frac{16}{\lambda^2}} = 5$$

$$\lambda^2 + 16 = 25$$

$$\lambda^2 = 9$$

$$\text{Now } e_H = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}$$

$$L(\text{LR}) = \frac{2a^2}{b} = \frac{2 \times 16}{3} = \frac{32}{3}$$


$$24(e + L) = 24 \left(\frac{5}{13} + \frac{32}{3} \right) = 24 \left(\frac{37}{3} \right)$$

$$= 8 \times 37 = 296$$

23. An ellipse has centre at $(1, -2)$ and one of the focus at $(3, -2)$ and one vertex at $(5, -2)$, then the length of its latus rectum is

Answer (6)

Sol.

$$\therefore ae = 2 \text{ and } a = 4$$

$$\therefore e = \frac{1}{2}$$

$$b^2 = a^2(1 - e^2)$$

$$b^2 = 16 \left(1 - \frac{1}{4} \right) = 12$$

$$\therefore \text{Length of latus rectum} = \frac{2b^2}{a} = \frac{2 \times 12}{4} = 6$$

24. $F(x) = \int \frac{dx}{x^{2/3} + 2x^{1/2}}$ be such that $F(0) = -26 + 24\ln 2$. If $F(1) = a + b\ln 3$, then $a + b$ is equal to

Answer (13)

Sol. $\int \frac{dx}{x^{2/3} + 2x^{1/2}}$

$$\text{Let } x = t^6$$

$$dx = 6t^5 dt$$

$$= 6 \int \frac{t^5 dt}{t^4 + 2t^3}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100 out of 100 Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100 out of 100 Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100 out of 100 Overall

$$\begin{aligned}
 &= 6 \int \frac{t^2}{t+2} dt \\
 &= 6 \int \frac{t^2 - 4 + 4}{t+2} dt \\
 &= 6 \int t+2 \frac{+4}{t+2} dt \\
 &= 6 \left[\frac{t^2}{2} + 2t + 4 \ln|t+2| \right] + c
 \end{aligned}$$

$$F(x) = 6 \left[\frac{x^{1/3}}{2} + 2x^{1/3} + 4 \ln|x^{1/6} + 2| \right] + c$$

$$F(0) = 24 \ln 2 + c = -26 + 24 \ln 2$$

$$c = -26$$

$$F(1) = \left[\frac{1}{2} + 2 + 4 \ln 3 \right] - 26 \equiv a + b \ln 3$$

$$-11 + 24 \ln 3 = a + b \ln 3$$

$$a + b = 24 - 11 = 13$$

25.

□ □ □

Aakash
Medical|IIT-JEE|Foundations

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)