Date: 04/06/2023

Aakash
 + bibaus

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005| Ph.: 011-47623456
Time : 3 mrs . Answers \& Solutions

for
 JEE (Advanced)-2023 (Paper-2)

PART-I : PHYSICS

SECTION 1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. An electric dipole is formed by two charges $+q$ and $-q$ located in $x y$-plane at $(0,2) \mathrm{mm}$ and $(0,-2) \mathrm{mm}$, respectively, as shown in the figure. The electric potential at point $P(100,100) \mathrm{mm}$ due to the dipole is V_{0}. The charges $+q$ and $-q$ are then moved to the points $(-1,2) \mathrm{mm}$ and $(1,-2) \mathrm{mm}$, respectively. What is the value of electric potential at P due to the new dipole?

2021

2020

(A) $\frac{V_{0}}{4}$
(B) $\frac{V_{0}}{2}$
(C) $\frac{V_{0}}{\sqrt{2}}$
(D) $\frac{3 V_{0}}{4}$

Answer (B)

Sol. $V_{1} \propto \frac{p_{1} \cos \theta_{1}}{r_{1}^{3}}$

$\frac{V_{2}}{V_{1}}=\frac{p_{2} \cos \theta_{2}}{p_{1} \cos \theta_{1}}$
$\frac{V_{2}}{V_{1}}=\frac{q(-2 \hat{i}+4 \hat{j}) \cdot(\hat{i}+\hat{j})}{q(0 \hat{i}+4 \hat{j}) \cdot(\hat{i}+\hat{j})}=\frac{1}{2}$
$\Rightarrow \quad V_{2}=\frac{V_{0}}{2}$

Aakashians Shine as Champions in JEE Advanced

2. Young's modulus of elasticity Y is expressed in terms of three derived quantities, namely, the gravitational constant G, Planck's constant h and the speed of light c, as $Y=c^{\alpha} h^{\beta} G^{\gamma}$. Which of the following is the correct option?
(A) $\alpha=7, \beta=-1, \gamma=-2$
(B) $\alpha=-7, \beta=-1, \gamma=-2$
(C) $\alpha=7, \beta=-1, \gamma=2$
(D) $\alpha=-7, \beta=1, \gamma=-2$

Answer (A)

Sol. $Y=c^{\alpha} h^{\beta} G^{\gamma}$
$\left[M^{1} L^{-1} T^{-2}\right]=\left[M^{0} L^{1} T^{-1}\right]^{\alpha}\left[M^{1} L^{2} T^{-1}\right]^{\beta}\left[M^{-1} L^{3} T^{-2}\right]^{\gamma}$
$1=\beta-\gamma$
$-1=\alpha+2 \beta+3 \gamma$
$-2=-\alpha-\beta-2 \gamma$
Solving
$\alpha=7, \beta=-1, \gamma=-2$
3. A particle of mass m is moving in the $x y$-plane such that its velocity at a point (x, y) is given as $\vec{v}=\alpha(y \hat{x}+2 x \hat{y})$, where α is a non-zero constant. What is the force \vec{F} acting on the particle?
(A) $\vec{F}=2 m \alpha^{2}(x \hat{x}+y \hat{y})$
(B) $\vec{F}=m \alpha^{2}(y \hat{x}+2 x \hat{y})$
(C) $\vec{F}=2 m \alpha^{2}(y \hat{x}+x \hat{y})$
(D) $\vec{F}=m \alpha^{2}(x \hat{x}+2 y \hat{y})$

Answer (A)

Sol. $F=m \frac{d \vec{v}}{d t}$
$\vec{v}=\alpha(y \hat{x}+2 x \hat{y})$
$\frac{d \hat{v}}{d t}=\alpha\left(\frac{d y}{d t} \hat{x}+2 \frac{d x}{d t} \hat{y}\right)$
$=\alpha\left(v_{y} \hat{x}+2 v_{x} \hat{y}\right)$
$=\alpha[2 x \alpha \hat{x}+2 \alpha y \hat{y}]$
$=2 \alpha^{2}[x \hat{x}+y \hat{y}]$
$\vec{F}=2 m \alpha^{2}[x \hat{x}+y \hat{y}]$
4. An ideal gas is in thermodynamic equilibrium. The number of degrees of freedom of a molecule of the gas is n. The internal energy of one mole of the gas is U_{n} and the speed of sound in the gas is v_{n}. At a fixed temperature and pressure, which of the following is the correct option?
(A) $v_{3}<v_{6}$ and $U_{3}>U_{6}$
(B) $v_{5}>v_{3}$ and $U_{3}>U_{5}$
(C) $v_{5}>v_{7}$ and $U_{5}<U_{7}$
(D) $v_{6}<v_{7}$ and $U_{6}<U_{7}$

Answer (C)

2022

2021

Sol. $U_{n}=\frac{1 \times n \times R T}{2}=\frac{n R T}{2}$
$v_{n}=\sqrt{\frac{\gamma R T}{M}}=\sqrt{\frac{\left(1+\frac{2}{n}\right) R T}{M}}$
$\Rightarrow U_{7}>U_{5}$ and $U_{7}>U_{6}$
and $v_{5}>v_{7}$

SECTION 2 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : $\quad+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : + 2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.
5. A monochromatic light wave is incident normally on a glass slab of thickness d, as shown in the figure. The refractive index of the slab increases linearly from n_{1} to n_{2} over the height h. Which of the following statement(s) is(are) true about the light wave emerging out of the slab?

2021

(A) It will deflect up by an angle $\tan ^{-1}\left[\frac{\left(n_{2}^{2}-n_{1}^{2}\right) d}{2 h}\right]$
(B) It will deflect up by an angle $\tan ^{-1}\left[\frac{\left(n_{2}-n_{1}\right) d}{h}\right]$
(C) It will not deflect
(D) The deflection angle depends only on $\left(n_{2}-n_{1}\right)$ and not on the individual values of n_{1} and n_{2}

Answer (D)

Sol.

Dashed line $M N$ and $P Q$ are incident wave front.
Just before entering the slab $P Q$ is maxima.
P_{1} and Q_{1} are the points on other face of slab.
So, P_{1} will be at lead of n_{2} d w.r.t. P
And Q will be at lead of $n_{1} d$ w.r.t. Q
Right of the medium is homogeneous
So to have same path lead as $P_{1} . Q^{\prime}$ must travel to Q_{1}, so $n_{2} d=n_{1} d+h \sin \theta$
6. An annular disk of mass M, inner radius a and outer radius b is placed on a horizontal surface with coefficient of friction μ, as shown in the figure. At some time, an impulse $J_{0} \hat{x}$ is applied at a height h above the center of the disk. If $h=h_{m}$ then the disk rolls without slipping along the x-axis. Which of the following statement(s) is(are) correct?

(A) For $\mu \neq 0$ and $a \rightarrow 0, h_{m}=b / 2$
(B) For $\mu \neq 0$ and $a \rightarrow b, h_{m}=b$
(C) For $h=h_{m}$, the initial angular velocity does not depend on the inner radius a
(D) For $\mu=0$ and $h=0$, the wheel always slides without rolling

Answer (A, B, C, D)

2022

2021

2020

Sol. $\vec{J}=\overrightarrow{\Delta p}$

$$
\begin{equation*}
\Rightarrow \quad J_{0}=M V \tag{i}
\end{equation*}
$$

About

$\overrightarrow{A . J}=\overrightarrow{\Delta L}$
$\Rightarrow J_{0} \times h=\frac{M}{2}\left(a^{2}+b^{2}\right) \omega$
If $h=h_{m} \Rightarrow \omega=\frac{v}{b}$
$\Rightarrow \quad J_{0} \times h_{m}=\left(\frac{m}{2}\right)\left(a^{2}+b^{2}\right) \frac{v}{b}$
Equation (i) \div Equation (ii)
$\Rightarrow \quad h_{m}=\frac{a^{2}+b^{2}}{2 b}$
If $a \rightarrow 0 \Rightarrow h_{m}=\frac{b}{2}$
If $a \rightarrow b \Rightarrow h_{m}=b$
If $h=h_{m} \Rightarrow \omega$ is independent of a (equation A)
If $r=0, h=0 \Rightarrow$ always sliding
7. The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by $\vec{E}=30(2 \hat{x}+\hat{y}) \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^{7}}{3} z\right)\right] \mathrm{Vm}^{-1}$. Which of the following option(s) is(are) correct? [Given: The speed of light in vacuum, $\left.c=3 \times 10^{8} \mathrm{~ms}^{-1}\right]$
(A) $B_{x}=-2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^{7}}{3} z\right)\right] \mathrm{Wb} \mathrm{m}^{-2}$
(B) $B_{y}=2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} t-\frac{10^{7}}{3} z\right)\right] \mathrm{Wb} \mathrm{m}^{-2}$
(C) The wave is polarized in the $x y$-plane with polarization angle 30° with respect to the x-axis
(D) The refractive index of the medium is 2

Answer (A, D)

Aakashians Shine as Champions in JEE Advanced

2021

Sol. Speed of light in medium is $V=\frac{w}{k}$

$$
V=\frac{3 \times 5 \times 10^{14}}{10^{7}}
$$

$$
V=1.5 \times 10^{8}
$$

Refractive index $\mu=\frac{C}{V}=\frac{3 \times 10^{8}}{1.5 \times 10^{8}}=2$

$$
\mu=2
$$

Given $\vec{E}=30(2 \hat{x}+\hat{y}) \sin \left(2 \pi\left(5 \times 10^{14} t-\frac{10^{7}}{3} 2\right)\right)^{1 / m}$

$B_{0}=\frac{E_{0}}{V}=\frac{30 \sqrt{5}}{1.5 \times 10^{8}}$
Direction of \vec{B}_{0} is $(\vec{V} \times \vec{E})$
$\vec{V} \times \vec{E}$
$=\hat{k} \times \frac{(2 \hat{i}+\hat{j})}{\sqrt{5}}$
$\left(\frac{-\hat{i}+2 \hat{j}}{\sqrt{5}}\right)$ put value $\vec{B}_{0}=\frac{30 \sqrt{5}}{1.5 \times 10^{8}} \times\left(\frac{-\hat{i}+2 \hat{j}}{\sqrt{5}}\right)$

$$
B_{x}=-2 \times 10^{7}
$$

Option A, D correct

Aakashians Shine as

 Champions in JEE Advanced

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
8. A thin circular coin of mass 5 gm and radius $4 / 3 \mathrm{~cm}$ is initially in a horizontal $x y$-plane. The coin is tossed vertically up ($+z$ direction) by applying an impulse of $\sqrt{\frac{\pi}{2} \times 10^{-2}} \mathrm{~N}-\mathrm{s}$ at a distance $2 / 3 \mathrm{~cm}$ from its center. The coin spins about its diameter and moves along the $+z$ direction. By the time the coin reaches back to its initial position, it completes n rotations. The value of n is \qquad .
[Given: The acceleration due to gravity $\mathrm{g}=10 \mathrm{~ms}^{-2}$]

Impulse

Answer (30)

Sol. By impulse - momentum theorem :
$J=M V_{C M}$
$\Rightarrow \quad V_{C M}=\frac{J}{M}=\frac{\sqrt{\frac{\pi}{2}}}{100 \times \frac{5}{1000}}=\sqrt{2 \pi} \mathrm{~m} / \mathrm{s}$
\Rightarrow Total time of journey $=\frac{2}{g} \times \sqrt{2 \pi}$
$\Rightarrow \quad \Delta t=\frac{\sqrt{2 \pi}}{5} s$
Also, by angular impulse - momentum theorem :
$J \times \frac{R}{2}=\left[\frac{M R^{2}}{4}\right] w$

Aakashians Shine as Champions in JEE Advanced

2021

$\Rightarrow W=\frac{J \times \frac{R}{2}}{\frac{M R^{2}}{4}}=\frac{J}{M R} \times 2$

$$
=\frac{\frac{\sqrt{\frac{\pi}{2}}}{100} \times 2}{\frac{5}{1000} \times \frac{4}{3} \times \frac{1}{100}}
$$

$2 \times 75 \sqrt{2 \pi} \mathrm{rad} / \mathrm{s}$
\Rightarrow Number of rotations $\frac{w \cdot \Delta t}{2 \pi}$
$\frac{2 \times 75 \sqrt{2 \pi} \times \frac{\sqrt{2 \pi}}{5}}{2 \pi}=30$
$\Rightarrow \quad n=30$
9. A rectangular conducting loop of length 4 cm and width 2 cm is in the $x y$-plane, as shown in the figure. It is being moved away from a thin and long conducting wire along the direction $\frac{\sqrt{3}}{2} \hat{x}+\frac{1}{2} \hat{y}$ with a constant speed v. The wire is carrying a steady current $I=10 \mathrm{~A}$ in the positive x-direction. A current of $10 \mu \mathrm{~A}$ flows through the loop when it is at a distance $d=4 \mathrm{~cm}$ from the wire. If the resistance of the loop is 0.1Ω, then the value of v is
\qquad ms^{-1}.
[Given: The permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{NA}^{-2}$]

Answer (4)

Aakashians Shine as Champions in JEE Advanced

Sol. The two sides perpendicular to the wire would contribute net zero emf.
For parallel sides:

$$
\begin{aligned}
\vec{E}= & \vec{B} \times \vec{v} \\
= & \frac{\mu_{0} I}{2 \pi x} \times v \\
\Rightarrow & \text { Net emf }=\left(E_{1} \cos 60^{\circ}-E_{2} \cos 60^{\circ}\right) \times \text { width } \\
& =\frac{1}{2} \times \frac{2}{100} \times \frac{\mu_{0} / v}{2 \pi}\left[\frac{1}{\frac{4}{100}}-\frac{1}{\frac{8}{100}}\right] \\
& =\frac{1}{100} \times 10^{-7} \times 2 \times 10 \times v \times 100 \times \frac{1}{8} \\
& =2.5 v \times 10^{-7}=i \times R \\
\Rightarrow & v=\frac{10 \times 10^{-6} \times 0.1}{2.5 \times 10^{-7}}=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

10. A string of length 1 m and mass $2 \times 10^{-5} \mathrm{~kg}$ is under tension T. When the string vibrates, two successive harmonics are found to occur at frequencies 750 Hz and 1000 Hz . The value of tension T is \qquad newton.

Answer (5)

Sol. $I=1 \mathrm{~m}, m=2 \times 10^{-5} \mathrm{~kg}, T$: Tension in the string.
\because Successive frequencies are being given
\therefore It is the case of both ends fixed.
Now,

$$
\begin{aligned}
& f_{n+1}-f_{n}=1000-750 \\
\Rightarrow & \frac{(n+1)}{2 l} \sqrt{\frac{T}{\mu}}-\frac{n}{2 /} \sqrt{\frac{T}{\mu}}=250 \\
\Rightarrow & \frac{1}{2 /} \sqrt{\frac{T}{\mu}}=250 \\
\Rightarrow & \sqrt{\frac{T}{2 \times 10^{-5}}}=250 \times 2 \times 1 \\
\Rightarrow & \frac{T}{2 \times 10^{-5}}=25 \times 10^{-4} \\
\Rightarrow & T=50 \times 10^{-1} \\
T= & 5 \mathrm{~N}
\end{aligned}
$$

Aakashians Shine as Champions in JEE Advanced

11. An incompressible liquid is kept in a container having a weightless piston with a hole. A capillary tube of inner radius 0.1 mm is dipped vertically into the liquid through the airtight piston hole, as shown in the figure. The air in the container is isothermally compressed from its original volume V_{0} to $\frac{100}{101} V_{0}$ with the movable piston. Considering air as an ideal gas, the height (h) of the liquid column in the capillary above the liquid level in cm is \qquad .
[Given: Surface tension of the liquid is $0.075 \mathrm{~N} \mathrm{~m}^{-1}$, atmospheric pressure is $10^{5} \mathrm{~N} \mathrm{~m}^{-2}$, acceleration due to gravity (g) is $10 \mathrm{~m} \mathrm{~s}^{-2}$, density of the liquid is $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and contact angle of capillary surface with the liquid is zero]

Answer (25)

Sol. Let P_{f} be the air pressure
$P_{0} v_{0}=P_{f} v_{f}$
$P_{0} v_{0}=P_{f}\left(\frac{100}{101}\right) v_{0}$
$P_{f}=101 \times 10^{3} \mathrm{~Pa}$
$\left(\because P_{0}=10^{5} \mathrm{Nm}^{-2}\right)$
Now, consider the 4 points shown in diagram

$$
\begin{aligned}
& P_{d}-P_{c}=\frac{2 T}{R} \quad\left(\because P_{d}=P_{0}\right) \\
\therefore & P_{c}=P_{0}-\frac{2 T}{R}
\end{aligned}
$$

Now,
$P_{a}=P_{b} \quad$ (also, $\left.P_{a}=P_{f}\right)$
$P_{f}=\rho g h+P_{c}$
$101 \times 10^{3}=\left(10^{3} \times 10 \times h\right)+\left(10^{5}-\frac{2 \times 0.075}{0.1 \times 10^{-3}}\right)$
$h=\frac{1}{4} \mathrm{~m}=25 \mathrm{~cm}$

2022

2021

12. In a radioactive decay process, the activity is defined as $A=-\frac{d N}{d t}$, where $N(t)$ is the number of radioactive nuclei at time (t). Two radioactive sources, S_{1} and S_{2} have same activity at time $t=0$. At a later time, the activities of S_{1} and S_{2} are A_{1} and A_{2}, respectively. When S_{1} and S_{2} have just completed their $3^{\text {rd }}$ and $7^{\text {th }}$ half-lives, respectively, the ratio $\frac{A_{1}}{A_{2}}$ is \qquad .

Answer (16)

Sol. $A_{1}=A_{0} e^{-\lambda_{1} t_{1}}$
also $A_{2}=A_{0} e^{-\lambda_{2} t_{2}}$
at $t_{1}=\frac{3 \ln 2}{\lambda_{1}}, A_{1}=A_{0} e^{-\lambda_{1} \frac{3 \ln 2}{\lambda_{1}}}$

$$
\begin{equation*}
=A_{0} e^{-3 \ln 2} \tag{i}
\end{equation*}
$$

Similarly, at

$$
\begin{align*}
t_{2}= & \frac{7 \ln 2}{\lambda_{2}}, A_{2}=A_{0} e^{-\lambda_{2} \frac{7 \ln 2}{\lambda_{2}}} \\
& =A_{0} e^{-7 \ln 2}
\end{align*}
$$

From (i) and (ii)
$\frac{A_{1}}{A_{2}}=\frac{A_{0} e^{-3 \ln 2}}{A_{0} e^{-7 \ln 2}}=\frac{2^{-3}}{2^{-7}}=\frac{1}{2^{-4}}=2^{4}=16$
$\therefore \quad \frac{A_{1}}{A_{2}}=16$

Aakashians Shine as Champions in JEE Advanced

13. One mole of an ideal gas undergoes two different cyclic processes I and II, as shown in the P - Vdiagrams below. In cycle I, processes a, b, c and d are isobaric, isothermal, isobaric and isochoric, respectively. In cycle II, processes $a^{\prime}, b^{\prime}, c^{\prime}$ and d^{\prime} are isothermal, isochoric, isobaric and isochoric, respectively. The total work done during cycle I is W_{I} and that during cycle II is $W_{I I}$. The ratio $W_{I} W_{I I}$ is \qquad .

Answer (2)
Sol.

$W_{1}=W_{a}+W_{b}+W_{c}+W_{d}$

$$
=4 P_{0}\left(2 V_{0}-V_{0}\right)+n R T \ln \left(\frac{4 V_{0}}{2 V_{0}}\right)+2 P_{0}\left(V_{0}-4 V_{0}\right)+0
$$

$$
=4 P_{0} V_{0}+n R\left(\frac{8 P_{0} V_{0}}{n R}\right) \ln 2-6 P_{0} V_{0}
$$

$$
=8 P_{0} V_{0} \ln 2-2 P_{0} V_{0}
$$

$$
W_{॥ 1}=W_{a}^{\prime}+W_{b}^{\prime}+W_{c}^{\prime}+W_{d}^{\prime}
$$

$$
=n R T \ln \left(\frac{2 V_{0}}{V_{0}}\right)+0+P_{0}\left(V_{0}-2 V_{0}\right)+0
$$

$$
=n R\left(\frac{4 P_{0} V_{0}}{n R}\right) \ln 2-P_{0} V_{0}
$$

$$
=4 P_{0} V_{0} \ln 2-P_{0} V_{0}
$$

$$
\frac{W_{I}}{W_{I I}}=\frac{8 P_{0} V_{0} \ln 2-2 P_{0} V_{0}}{4 P_{0} V_{0} \ln 2-P_{0} V_{0}}=2
$$

2022

2021

2020

SECTION 4 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	+3	If ONLY the correct numerical value is entered in the designated place;
Zero Marks	$:$	0	In all other cases.

PARAGRAPH I
S_{1} and S_{2} are two identical sound sources of frequency 656 Hz . The source S_{1} is located at O and S_{2} moves anticlockwise with a uniform speed $4 \sqrt{2} \mathrm{~ms}^{-1}$ on a circular path around O, as shown in the figure. There are three points P, Q and R on this path such that P and R are diametrically opposite while Q is equidistant from them. A sound detector is placed at point P. The source S_{1} can move along direction $O P$.
[Given: The speed of sound in air is $324 \mathrm{~m} \mathrm{~s}^{-1}$]

14. When only S_{2} is emitting sound and it is at Q, the frequency of sound measured by the detector in Hz is
\qquad

Answer (648)

Sol.

$f_{0}=656 \mathrm{~Hz}$
Velocity of sound
$=324 \mathrm{~m} / \mathrm{s}$.
Velocity of source away from detector
$V_{s}=4 \sqrt{2} \cos 45^{\circ}=4 \mathrm{~m} / \mathrm{s}$
$\therefore \quad f=\left(\frac{v}{v+v_{s}}\right) f_{0}=\left(\frac{324}{324+4}\right) 656$
$f=648 \mathrm{~Hz}$.

PARAGRAPH I

S_{1} and S_{2} are two identical sound sources of frequency 656 Hz . The source S_{1} is located at O and S_{2} moves anti-clockwise with a uniform speed $4 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$ on a circular path around O, as shown in the figure. There are three points P, Q and R on this path such that P and R are diametrically opposite while Q is equidistant from them. A sound detector is placed at point P. The source S_{1} can move along direction $O P$.
[Given: The speed of sound in air is $324 \mathrm{~m} \mathrm{~s}^{-1}$]

15. Consider both sources emitting sound. When S_{2} is at R and S_{1} approaches the detector with a speed $4 \mathrm{~m} \mathrm{~s}^{-1}$, the beat frequency measured by the detector is \qquad Hz .

Answer (8.20)

Aakashians Shine as Champions in JEE Advanced

2022

2021

2020

$\underset{\text { 4 Year Classroom }}{\text { CHIRAG FALOR }}$

Sol.

$f_{0}=656 \mathrm{~Hz}$
$v=324 \mathrm{~m} / \mathrm{s}$
Frequency heard due to movement of $\left(S_{1}\right)$
$f_{1}=\left(\frac{v}{v-u_{s}}\right) f_{0}$
$f_{1}=\frac{324}{320} \times 656$
And frequency heard due to movement of $\left(S_{2}\right)$
$f_{2}=656 \mathrm{~Hz}$
\therefore Beat frequency $\Delta f=f_{1}-f_{2}=656\left(\frac{324}{320}-1\right)$

$$
\Delta f=8.2
$$

PARAGRAPH II

A cylindrical furnace has height (H) and diameter (D) both 1 m . It is maintained at temperature 360 K . The air gets heated inside the furnace at constant pressure P_{a} and its temperature becomes $T=360 \mathrm{~K}$. The hot air with density ρ rises up a vertical chimney of diameter $d=0.1 \mathrm{~m}$ and height $h=9 \mathrm{~m}$ above the furnace and exits the chimney (see the figure). As a result, atmospheric air of density $\rho_{\mathrm{a}}=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$, pressure P_{a} and temperature $T_{\mathrm{a}}=300 \mathrm{~K}$ enters the furnace. Assume air as an ideal gas, neglect the variations in ρ and T inside the chimney and the furnace. Also ignore the viscous effects.
[Given: The acceleration due to gravity $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and $\pi=3.14$]

Aakashians Shine as Champions in JEE Advanced

2021

- 16 -

16. Considering the air flow to be streamline, the steady mass flow rate of air exiting the chimney is \qquad $\mathrm{gm} \mathrm{s}^{-1}$. Answer (47.10)
Sol. $\because P M=\rho R T$
And P inside furnace is constant
$\therefore \rho R T=$ constant
or $\rho T=$ constant
$\therefore \rho_{a} T_{a}=\rho T$
$1.2(300)=\rho(360)$
$\rho=1 \mathrm{~kg} / \mathrm{m}^{3}$
Now, applying Bernoulli's theorem at the bottom and the top of chimney
$P_{a}+\frac{1}{2} \rho(0)^{2}+0=\left(P_{a}-\rho_{a} g h\right)+\frac{1}{2} \rho\left(v^{2}\right)+\rho g h$
$v=\sqrt{\frac{2\left(\rho_{a}-\rho\right) g h}{\rho}}$
$\Rightarrow \mathrm{v}=6 \mathrm{~m} / \mathrm{s}$
$\therefore \frac{d m}{d t}$ at exit $=\rho v\left(\frac{\pi d^{2}}{4}\right)$
$=\frac{1 \times 6 \times 3.14 \times(0.1)^{2}}{4}$
$=0.0471 \mathrm{~kg} / \mathrm{s}$
$=47.10 \mathrm{~g} / \mathrm{s}$

Aakashians Shine as Champions in JEE Advanced

- 17 -

PARAGRAPH II

A cylindrical furnace has height (H) and diameter (D) both 1 m . It is maintained at temperature 360 K . The air gets heated inside the furnace at constant pressure P_{a} and its temperature becomes $T=360 \mathrm{~K}$. The hot air with density ρ rises up a vertical chimney of diameter $d=0.1 \mathrm{~m}$ and height $h=9 \mathrm{~m}$ above the furnace and exits the chimney (see the figure). As a result, atmospheric air of density $\rho_{\mathrm{a}}=1.2 \mathrm{~kg} \mathrm{~m}^{-3}$, pressure P_{a} and temperature $T_{\mathrm{a}}=300 \mathrm{~K}$ enters the furnace. Assume air as an ideal gas, neglect the variations in ρ and T inside the chimney and the furnace. Also ignore the viscous effects.
[Given: The acceleration due to gravity $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and $\pi=3.14$]

17. When the chimney is closed using a cap at the top, a pressure difference ΔP develops between the top and the bottom surfaces of the cap. If the changes in the temperature and density of the hot air, due to the stoppage of air flow, are negligible then the value of ΔP is \qquad Nm^{-2}.

Answer (30.00)
Sol. $P_{\text {out }}=P_{a}-\rho_{a} g(H+h)$
$P_{\text {in }}=P_{a}-\rho g h$
$\therefore \Delta P=\left(P_{a}-\rho g h\right)-\left(P_{a}-\rho_{a} g(H+h)\right)$
$=\left(\rho_{a}-\rho\right) g h+\rho_{a} g H$
$=0.2 \times 10 \times 9+1.2 \times 10 \times 1$
$=30 \mathrm{Nm}^{-2}$

2022

2021

2020

PART-II : CHDMISTRY

SECTION 1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. The correct molecular orbital diagram for F_{2} molecule in the ground state is
(A)

(C)

(D)

Answer (C)

Sol. Molecular orbital diagram for F_{2} molecule is given below

Hence the correct option is (C).
2. Consider the following statements related to colloids.
(I) Lyophobic colloids are not formed by simple mixing of dispersed phase and dispersion medium.
(II) For emulsions, both the dispersed phase and the dispersion medium are liquid.
(III) Micelles are produced by dissolving a surfactant in any solvent at any temperature.
(IV) Tyndall effect can be observed from a colloidal solution with dispersed phase having the same refractive index as that of the dispersion medium.

The option with the correct set of statements is
(A) (I) and (II)
(B) (II) and (III)
(C) (III) and (IV)
(D) (II) and (IV)

Answer (A)

Sol. Lyophobic colloids are not formed by simple mixing of dispersed phase and dispersion medium. Their colloidal sols can be prepared only by special methods. Emulsion are colloids of liquid dispersed phase and liquid dispersion medium.

Micelles formation occurs when temperature is above a particular temperature called Kraft temperature T_{κ} and concentration above a particular value know as critical micelle concentration (CMC).
Tyndall effect can be observed when the refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.

Aakashians Shine as Champions in JEE Advanced

2022

2021

3. In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} are the major products.

(iv) NaOH

(i) Mg, dry ether

$\xrightarrow[\text { (iii) } \mathrm{CrO}_{3}]{\text { (ii) } \mathrm{CH}_{3} \mathrm{CHO} \text {, then } \mathrm{H}_{2} \mathrm{O}} \mathbf{R}$

(i) ethanolic NaCN

$\xrightarrow{\text { (ii) } \mathrm{H}_{2} / \mathrm{Ni}} \mathbf{s}$
(iii) $\mathrm{CHCl}_{3} / \mathrm{KOH}, \Delta$
(iv) LiAlH_{4}, then $\mathrm{H}_{2} \mathrm{O}$

The correct statement about $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} is
(A) \mathbf{P} is a primary alcohol with four carbons.
(B) \mathbf{Q} undergoes Kolbe's electrolysis to give an eight-carbon product.
(C) \mathbf{R} has six carbons and it undergoes Cannizzaro reaction.
(D) S is a primary amine with six carbons.

Answer (B)

Sol.

(P)

Kolbe electrolysis :

8 carbon containing product

(R)

It undergoes aldol reaction not Cannizzaro.

(S)

Secondary amine
Since only Q fulfilled all the given conditions.
Hence, the correct option is (B).

4. A disaccharide \mathbf{X} cannot be oxidised by bromine water. The acid hydrolysis of \mathbf{X} leads to a laevorotatory solution. The disaccharide \mathbf{X} is
(A)

(B)

(C)

(D)

Answer (A)
Sol. A and D cannot be oxidised by bromine water as they do not have hemiacetal linkage.
The acid hydrolysis of A leads to a laevorotatory solution.
A is sucrose which is dextrorotatory, on acid hydrolysis gives mixture of α-D-glucose and β - D-fructose, the mixture is laevorotatory.

SECTION 2 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.
5. The complex(es), which can exhibit the type of isomerism shown by $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br} 2\right]$, is(are) [en $\left.=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]$
(A) $\left[\mathrm{Pt}(\mathrm{en})(\mathrm{SCN})_{2}\right]$
(B) $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(C) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} 4\right]$
(D) $\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{SO}_{4}\right)\right]^{+}$

Answer (C, D)

Sol. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ can exhibit G.I.
G.I. can be shown by
$\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl} 4\right],\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{SO}_{4}\right)\right]^{+}$
6. Atoms of metals x, y and z form face-centred cubic (fcc) unit cell of edge length L_{x}, body-centred cubic (bcc) unit cell of edge length L_{y}, and simple cubic unit cell of edge length L_{z}, respectively.
If $r_{z}=\frac{\sqrt{3}}{2} r_{y} ; r_{y}=\frac{8}{\sqrt{3}} r_{x} ; M_{z}=\frac{3}{2} M_{y}$ and $M_{z}=3 M_{x}$, then the correct statement(s) is(are)
[Given: M_{x}, M_{y}, and M_{z} are molar masses of metals x, y, and z, respectively. r_{x}, r_{y}, and r_{z} are atomic radii of metals x, y, and z, respectively.]
(A) Packing efficiency of unit cell of $x>$ Packing efficiency of unit cell of $y>$ Packing efficiency of unit cell of z
(B) $\mathrm{L}_{y}>\mathrm{L}_{z}$
(C) $L_{x}>L_{y}$
(D) Density of $x>$ Density of y

Answer (A, B, D)
Sol. Metal x forms FCC (edge length L_{x})
Metal y forms BCC (edge length L_{y})
Metal z forms SC (edge length L_{z})
Given $r_{z}=\frac{\sqrt{3}}{2} r_{y}$ and $r_{y}=\frac{8}{\sqrt{3}} r_{x}$
$\therefore \quad r_{z}=\frac{\sqrt{3}}{2} \times \frac{8}{\sqrt{3}} r_{x}=4 r_{x}$
$M_{z}=\frac{3}{2} M_{y} \quad M_{z}=3 M_{x}$
$\therefore M_{y}=2 M_{x}$
Packing efficiency FCC > BCC > SC
Packing efficiency unit cell $x>y>z$
In FCC unit cell:- atoms along the face diagonals are in contact.
$\therefore \sqrt{2} L_{x}=4 r_{x} \Rightarrow L_{x}=2 \sqrt{2} r_{x}$
In BCC unit cell: atoms along the body diagonal are
$\therefore \sqrt{3} L_{y}=4 r_{y} \Rightarrow L_{y}=\frac{4}{\sqrt{3}} r_{y}=\frac{4}{\sqrt{3}} \times \frac{8}{\sqrt{3}} r_{x}=\frac{32}{3} r_{x}$ $L_{y}=\frac{32}{3} r_{x}$

Aakashians Shine as Champions in JEE Advanced

2022

2021

In SC unit cell, atoms along the edge are in contact
$\therefore \quad \mathrm{L}_{z}=2 \mathrm{r}_{\mathrm{z}}$

$$
=2 \times 4 r_{x}=8 r_{x}
$$

$L_{x}=2 \sqrt{2} r_{x}$
$L_{y}=\frac{32}{3} r_{x}$
$L_{z}=8 r_{x}$
$\therefore \mathrm{L}_{y}>\mathrm{L}_{z}>\mathrm{L}_{x}$
Density of x (Number of atoms of x per unit cell $(z)=4)$
$d_{x}=\frac{z M_{x}}{\left(L_{x}\right)^{3} N_{A}}=\frac{4 \times M_{x}}{\left(2 \sqrt{2} r_{x}\right)^{3} \times N_{A}}$
$=\frac{4 M_{x}}{16 \sqrt{2} r_{x}^{3} N_{A}}=\frac{M_{x}}{4 \sqrt{2} r_{x}^{3} N_{A}}$
Density of y : (Number of atoms of y per unit cell $(z)=2)$
$d_{y}=\frac{z M_{y}}{\left(L_{y}\right)^{3} N_{A}}=\frac{2 \times 2 M_{x}}{\left(\frac{32}{3} r_{x}\right)^{3} N_{A}}=\frac{108 M_{x}}{32768 r_{x}^{3} N_{A}}$
\therefore Density of $\mathrm{x}>$ density of y .
7. In the following reactions, $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} are the major products.

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{KMnO}_{4}, \mathrm{KOH}, \Delta} \mathbf{P}$

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{\oplus}]{\text { (i) } \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}} \mathbf{Q}$

(i) Mg, dry ether
(ii) CO_{2}, then $\mathrm{H}_{3} \mathrm{O}^{\oplus}$
(iii) Ammoniacal $\mathrm{AgNO}_{3}, \mathrm{H}_{3} \mathrm{O}^{\oplus}$

2022

2021

The correct statement(s) about $\mathbf{P}, \mathbf{Q}, \mathbf{R}$, and \mathbf{S} is(are)
(A) \mathbf{P} and \mathbf{Q} are monomers of polymers dacron and glyptal, respectively.
(B) \mathbf{P}, \mathbf{Q}, and \mathbf{R} are dicarboxylic acids.
(C) Compounds \mathbf{Q} and \mathbf{R} are the same.
(D) \mathbf{R} does not undergo aldol condensation and \mathbf{S} does not undergo Cannizzaro reaction.

Answer (C, D)

Sol.

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	+4	If ONLY the correct integer is entered;
Zero Marks	$:$	0	In all other cases.

8. $\mathrm{H}_{2} \mathrm{~S}$ (5 moles) reacts completely with acidified aqueous potassium permanganate solution. In this reaction, the number of moles of water produced is \mathbf{x}, and the number of moles of electrons involved is \mathbf{y}. The value of $(x+y)$ is \qquad .

Answer (18)

Sol. $\mathrm{KMnO}_{4} \xrightarrow{\mathrm{H}^{+}} \mathrm{Mn}^{+2}$
$\mathrm{S}^{-2} \longrightarrow{ }^{0}$
$\therefore \quad \mathrm{n}$ factor of $\mathrm{KMnO}_{4}=5$

$$
\begin{aligned}
& n_{\text {factor of }} \mathrm{S}^{-2}\left(\mathrm{H}_{2} \mathrm{~S}\right)=2 \\
& \left(\mathrm{n}_{\mathrm{KMnO}_{4}} \times 5\right)=(5 \times 2)_{\mathrm{H}_{2} \mathrm{~S}}
\end{aligned}
$$

$$
\left[(\mathrm{GEN})_{\mathrm{KMnO}_{4}}=(\mathrm{GEP})_{\mathrm{H}_{2} \mathrm{~S}}\right]
$$

$\therefore \quad \mathrm{n}_{\mathrm{KMnO}_{4}}=2$
$\therefore \quad 2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+5 \mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+5 \mathrm{~S}+8 \mathrm{H}_{2} \mathrm{O}$
Number of moles of water produced = ' 8 '
Number of moles of electrons involved $=10$
$\therefore \quad \mathrm{x}=8, \mathrm{y}=10 \Rightarrow(\mathrm{x}+\mathrm{y})=18$
9. Among $\left[\mathrm{l}_{3}\right]^{+},\left[\mathrm{SiO}_{4}\right]^{4-}, \mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{XeF}_{2}, \mathrm{SF}_{4}, \mathrm{CIF}_{3}, \mathrm{Ni}\left(\mathrm{CO}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{XeF}_{4}\right.$, and SOCl_{2}, the total number of species having $s p^{3}$ hybridised central atom is \qquad .

Answer (5)

Sol.

10. Consider the following molecules : $\mathrm{Br}_{3} \mathrm{O}_{8}, \mathrm{~F}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}, \mathrm{H}_{2} \mathrm{~S}_{5} \mathrm{O}_{6}$, and $\mathrm{C}_{3} \mathrm{O}_{2}$. Count the number of atoms existing in their zero oxidation state in each molecule. Their sum is \qquad .
Answer (6)

Sol.

Total atom with zero oxidation number state are 6.
11. For He^{+}, a transition takes place from the orbit of radius 105.8 pm to the orbit of radius 26.45 pm . The wavelength (in nm) of the emitted photon during the transition is \qquad _,
[Use:
Bohr radius, $\mathrm{a}=52.9 \mathrm{pm}$
Rydberg constant, $R_{H}=2.2 \times 10^{-18} \mathrm{~J}$
Planck's constant, $\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}$
Speed of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$]

Answer (30)

Sol. $r=52.9 \times \frac{n^{2}}{z} p m$
$\therefore \quad 105.8=\frac{52.9 \times \mathrm{n}^{2}}{2} \quad \therefore \mathrm{n}_{2}=2$
and $26.45=52.9 \times \frac{\mathrm{n}^{2}}{2} \quad \therefore \mathrm{n}_{1}=1$

$$
\begin{aligned}
\because \quad & \Delta \mathrm{E}
\end{aligned}=\mathrm{R}_{\mathrm{H}} \mathrm{hC} \times \mathrm{z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] .
$$

Aakashians Shine as

2022

2021

$\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}=2.2 \times 10^{-18} \times 4 \times \frac{3}{4}$
$\therefore \lambda=300 \AA$
$\therefore \lambda=30 \mathrm{~nm}$
12. 50 mL of 0.2 molal urea solution (density $=1.012 \mathrm{~g} \mathrm{~mL}^{-1}$ at 300 K) is mixed with 250 mL of a solution containing 0.06 g of urea. Both the solutions were prepared in the same solvent. The osmotic pressure (in torr) of the resulting at 300 K is \qquad .
[Use : Molar mass of urea $=60 \mathrm{~g} \mathrm{~mol}^{-1}$; gas constant, $\mathrm{R}=62 \mathrm{~L}^{2}$ torr $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$;
Assume, $\Delta_{\text {mix }} \mathrm{H}=0, \Delta_{\text {mix }} \mathrm{V}=0$]

Answer (682)

Sol. Mole of urea $=0.2$
Weight of urea $=0.2 \times 60=12 \mathrm{~g}$
Weight of solvent $=1000 \mathrm{~g}$
Weight of solution $=1012 \mathrm{~g}$
\therefore Volume of solution $=\frac{1012}{1.012}=1000 \mathrm{ml}$
$\because \quad 1000 \mathrm{ml}$ solution contain 0.2 mole
$\therefore 50 \mathrm{ml}$ solution contain $=\frac{0.2 \times 50}{1000}=0.01$
Mole of urea in other solution $=\frac{0.06}{60}=0.001$
\therefore Concentration of solution $=\frac{0.01+0.001}{\frac{300}{1000}}$

$$
=0.0366
$$

$$
\begin{aligned}
\therefore \quad \pi & =\text { CRT } \\
& =0.0366 \times 62 \times 300 \\
& =682
\end{aligned}
$$

13. The reaction of 4-methyloct-1-ene ($\mathbf{P}, 2.52 \mathrm{~g}$) with HBr in the presence of $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \mathrm{O}_{2}$ gives two isomeric bromides in a $9: 1$ ratio, with a combined yield of 50%. Of these, the entire amount of the primary alkyl bromide was reacted with an appropriate amount of diethylamine followed by treatment with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ to give a nonionic product \mathbf{S} in 100% yield.
The mass (in mg) of \mathbf{S} obtained is \qquad .
[Use molar mass (in g mol${ }^{-1}$): $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{Br}=80$]
Answer (1791)

Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

$\mathrm{n}_{4 \text {-methyloct } 1 \text {-ene }}=0.01$
(S)
90% of $0.01=0.009$
Mass of $S=0.009 \times 199$

$$
\begin{aligned}
& =1.791 \mathrm{~g} \\
& =1791 \mathrm{mg}
\end{aligned}
$$

SECTION 4 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
Zero Marks : $0 \quad$ In all other cases.

PARAGRAPH I

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.
S_{T} and S_{0} are entropies of the phases at temperatures T and 0 K , respectively.

The transition temperature for α to β phase change is 600 K and $\mathrm{C}_{\mathrm{p}, \beta}-\mathrm{C}_{\mathrm{p}, \alpha}=1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Assume $\left(\mathrm{C}_{p, \beta}-\mathrm{C}_{\mathrm{p}, \alpha}\right)$ is independent of temperature in the range of 200 to $700 \mathrm{~K} . \mathrm{C}_{\mathrm{p}, \alpha}$ and $\mathrm{C}_{\mathrm{p}, \beta}$ are heat capacities of α and β phases, respectively.
14. The value of entropy change, $\mathrm{S}_{\beta}-\mathrm{S}_{\alpha}\left(\right.$ in $\left.\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$, at 300 K is \qquad .
[Use: $\ln 2=0.69$
Given: $\mathrm{S}_{\beta}-\mathrm{S}_{\alpha}=0$ at 0 K$]$

Answer (0.31)

Sol. $\Delta \mathrm{S}_{600}-\Delta \mathrm{S}_{300}=\int_{300}^{600} \frac{1 \times\left(\mathrm{C}_{\mathrm{p}, \beta}-\mathrm{C}_{\mathrm{p}, \alpha}\right) \mathrm{dT}}{\mathrm{T}}$

$$
\begin{aligned}
& \quad=1 \times 1 \times\left(\ln \frac{T_{2}}{T_{1}}\right) \quad\binom{T_{2}=600 \mathrm{~K}}{\mathrm{~T}_{1}=300 \mathrm{~K}} \\
& 1-\Delta \mathrm{S}_{300}=1 \times 1 \times \ln 2 \\
& \Delta \mathrm{~S}_{300}=1-0.69 \\
& \Delta \mathrm{~S}_{300}=0.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Aakashians Shine as Champions in JEE Advanced

2022

2021

PARAGRAPH I

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.
S_{T} and S_{0} are entropies of the phases at temperatures T and 0 K , respectively.

The transition temperature for α to β phase change is 600 K and $\mathrm{C}_{\mathrm{p}, \beta}-\mathrm{C}_{\mathrm{p}, \alpha}=1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Assume $\left(\mathrm{C}_{p, \beta}-\mathrm{C}_{\mathrm{p}, \alpha}\right)$ is independent of temperature in the range of 200 to $700 \mathrm{~K} . \mathrm{C}_{\mathrm{p}, \alpha}$ and $\mathrm{C}_{\mathrm{p}, \beta}$ are heat capacities of α and β phases, respectively.
15. The value of enthalpy change, $\mathrm{H}_{\beta}-\mathrm{H}_{\alpha}$ (in $\mathrm{J} \mathrm{mol}^{-1}$), at 300 K is \qquad .

Answer (300)

Sol. $\Delta \mathrm{H}_{600}-\Delta \mathrm{H}_{300}=1 \times\left(\mathrm{C}_{\mathrm{p}, \mathrm{\beta}}-\mathrm{C}_{\mathrm{p}, \alpha}\right)(600-300)$
Now, at transition temperature,

$$
\begin{aligned}
\Delta \mathrm{H}_{600} & =\mathrm{T} \Delta \mathrm{~S}_{600} \\
& =600 \times(6-5) \\
& =600 \mathrm{~J} \mathrm{~mol}^{-1} \\
600- & \Delta \mathrm{H}_{300}=1 \times 1 \times 300 \\
\Delta \mathrm{H}_{300} & =600-300 \\
& =300 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

Paragraph II

A trinitro compound, 1,3,5-tris-(4-nitrophenyl) benzene, on complete reaction with an excess of $\mathrm{Sn} / \mathrm{HCl}$ gives a major product, which on treatment with an excess of $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ provides \mathbf{P} as the product. \mathbf{P}, upon treatment with excess of $\mathrm{H}_{2} \mathrm{O}$ at room temperature, gives the product \mathbf{Q}. Bromination of \mathbf{Q} in aqueous medium furnishes the product \mathbf{R}. The compound \mathbf{P} upon treatment with an excess of phenol under basic conditions gives the product \mathbf{S}.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is $474 \mathrm{~g} \mathrm{~mol}^{-1}$ and between compounds \mathbf{P} and \mathbf{S} is $172.5 \mathrm{~g} \mathrm{~mol}^{-1}$.

Aakashians Shine as

 Champions in JEE Advanced

2022

2021

16. The number of heteroatoms present in one molecule of \mathbf{R} is \qquad .
[Use: Molar mass (in g mol${ }^{-1}$): $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80, \mathrm{CI}=35.5$
Atoms other than C and H are considered as heteroatoms]
Answer (9)
Sol.

Number of Heteroatoms in R is 9 .

Paragraph II

A trinitro compound, 1,3,5-tris-(4-nitrophenyl)benzene, on complete reaction with an excess of $\mathrm{Sn} / \mathrm{HCl}$ gives a major product, which on treatment with an excess of $\mathrm{NaNO}_{2} / \mathrm{HCl}$ at $0^{\circ} \mathrm{C}$ provides \mathbf{P} as the product. \mathbf{P}, upon treatment with excess of $\mathrm{H}_{2} \mathrm{O}$ at room temperature, gives the product \mathbf{Q}. Bromination of \mathbf{Q} in aqueous medium furnishes the product \mathbf{R}. The compound \mathbf{P} upon treatment with an excess of phenol under basic conditions gives the product \mathbf{S}.

The molar mass difference between compounds \mathbf{Q} and \mathbf{R} is $474 \mathrm{~g} \mathrm{~mol}^{-1}$ and between compounds \mathbf{P} and \mathbf{S} is $172.5 \mathrm{~g} \mathrm{~mol}^{-1}$.
17. The total number of carbon atoms and heteroatoms present in one molecule of \mathbf{S} is \qquad .
[Use: Molar mass (in g mol${ }^{-1}$): $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Br}=80, \mathrm{Cl}=35.5$

Atoms other than C and H are considered as heteroatoms]

Answer (51)

Sol. Compound S is

(S)

Number of Carbon atoms + Number of Heteroatoms = 51

2022

PART-III : MATHDMATICS

SECTION 1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.

1. Let $f:[1 . \infty) \rightarrow \mathbb{R}$ be a differentiable function such that $f(1)=\frac{1}{3}$ and $3 \int_{1}^{x} f(t) d t=x f(x)-\frac{x^{3}}{3}, x \in[1, \infty)$. Let e denote the base of the natural logarithm. Then the value of $f(e)$ is
(A) $\frac{e^{2}+4}{3}$
(B) $\frac{\log _{e} 4+e}{3}$
(C) $\frac{4 e^{2}}{3}$
(D) $\frac{e^{2}-4}{3}$

Answer (C)

Sol. $3 \int_{1}^{x} f(t) d t=x f(x)-\frac{x^{3}}{3}$
$\Rightarrow \quad 3 f(x)=f(x)+x f^{\prime}(x)-x^{2}$
$\Rightarrow \quad x f^{\prime}(x)-2 f(x)=x^{2}$
$\Rightarrow f^{\prime}(x)-\frac{2}{x} f(x)=x \Rightarrow$ (Linear differential equation)
\Rightarrow I.F. $=e^{-\frac{2}{x} d x}=\frac{1}{x^{2}}$
$\Rightarrow y\left(\frac{1}{x^{2}}\right)=\int x \times \frac{1}{x^{2}} d x=\ln x+C$
$\Rightarrow \quad y=x^{2}(\ln x+C)$
$\Rightarrow f(x)=x^{2}(\ln x+C)$
$\Rightarrow f(1)=1(0+C) \Rightarrow C=\frac{1}{3}$
$\Rightarrow f(e)=e^{2}\left(\ln e+\frac{1}{3}\right)$
$\Rightarrow f(e)=\frac{4 e^{2}}{3}$

Aakashians Shine as

2022

2. Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is
(A) $\frac{1}{3}$
(B) $\frac{5}{21}$
(C) $\frac{4}{21}$
(D) $\frac{2}{7}$

Answer (B)

Sol. $P(H)=\frac{1}{3}$
$P(T)=\frac{2}{3}$
$P(E)=P(H H)+P($ THH $)+P($ HTHH $)+P($ THTHH $)+P($ HTHTHH $)+P($ THTHTHH $)+\ldots$.
$=\frac{1}{3^{2}}+\frac{2}{3^{3}}+\frac{2}{3^{4}}+\frac{4}{3^{5}}+\frac{4}{3^{6}}+\frac{8}{3^{7}}+\frac{8}{3^{8}}+\ldots$.
$=\left(\frac{1}{3^{2}}+\frac{2}{3^{4}}+\frac{4}{3^{6}}+\ldots.\right)+\left(\frac{2}{3^{3}}+\frac{4}{3^{5}}+\frac{8}{3^{7}}+\ldots.\right)$
$P(E)=\frac{1}{7}+\frac{2}{21}=\frac{5}{21}$
3. For any $y \in \mathbb{R}$, let $\cot ^{-1}(y) \in(0, \pi)$ and $\tan ^{-1}(y) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the sum of all the solutions of the equation $\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\cot ^{-1}\left(\frac{9-y^{2}}{6 y}\right)=\frac{2 \pi}{3}$ for $0<|y|<3$, is equal to
(A) $2 \sqrt{3}-3$
(B) $3-2 \sqrt{3}$
(C) $4 \sqrt{3}-6$
(D) $6-4 \sqrt{3}$

Answer (C)

Sol. $\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\cot ^{-1}\left(\frac{9-y^{2}}{6 y}\right)=\frac{2 \pi}{3} \quad 0<|y|<3 \quad \Rightarrow y \in(-3,3)-\{0\}$
Case-I: $\quad \frac{6 y}{9-y^{2}}>0 \Rightarrow y>0$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3} \\
& \Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3} \\
& \Rightarrow \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{\pi}{3} \Rightarrow \frac{6 y}{9-y^{2}}=\sqrt{3} \\
& \Rightarrow 6 y=9 \sqrt{3}-\sqrt{3} y^{2} \\
& \Rightarrow \sqrt{3} y^{2}+6 y-9 \sqrt{3}=0 \\
& \Rightarrow \sqrt{3} y^{2}+9 y-3 y-9 \sqrt{3}=0 \\
& \Rightarrow \sqrt{3} y(y+3 \sqrt{3})-3(y+3 \sqrt{3})=0 \\
& \Rightarrow(y+3 \sqrt{3})-(\sqrt{3} y-3)=0 \\
& \quad y \neq-3 \sqrt{3} \quad \therefore y=\sqrt{3} \text { as } y \in(0,3)
\end{aligned}
$$

Case-II: $\quad \frac{6 y}{9-y^{2}}<0 \Rightarrow y<0$

$$
\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)+\pi+\tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=\frac{2 \pi}{3}
$$

$$
\Rightarrow 2 \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=-\frac{\pi}{3} \Rightarrow \tan ^{-1}\left(\frac{6 y}{9-y^{2}}\right)=-\frac{\pi}{6}
$$

$$
\Rightarrow \frac{6 y}{9-y^{2}}=-\frac{1}{\sqrt{3}}
$$

$$
\Rightarrow 6 \sqrt{3} y=-9+y^{2}
$$

$$
\Rightarrow y^{2}-6 \sqrt{3} y-9=0
$$

$$
\Rightarrow y=\frac{6 \sqrt{3} \pm \sqrt{108+36}}{2}=\frac{6 \sqrt{3} \pm 12}{2}=3 \sqrt{3} \pm 6
$$

as $y \in(-3.0) \quad \therefore y=3 \sqrt{3}-6$
\therefore Sum of solutions $=\sqrt{3}+(3 \sqrt{3}-6)=4 \sqrt{3}-6$

2022

2021
4. Let the position vectors of points P, Q, R and S be $\vec{a}=\hat{i}+2 \hat{j}-5 \hat{k}, \vec{b}=3 \hat{i}+6 \hat{j}+3 \hat{k}, \vec{c}=\frac{17}{5} \hat{i}+\frac{16}{5} \hat{j}+7 \hat{k}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
(A) The points P, Q, R and S are NOT coplanar
(B) $\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ internally in the ratio $5: 4$
(C) $\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides $P R$ externally in the ratio $5: 4$
(D) The square of magnitude of the vector $\vec{b} \times \vec{d}$ is 95

Answer (B)
Sol. $P(1,2,-5), Q(3,6,3), R\left(\frac{17}{5}, \frac{16}{5}, 7\right), S(2,1,1)$

$$
\begin{aligned}
& \frac{\vec{b}+2 \vec{d}}{3}=\frac{7 i+8 j+5 k}{3} \\
& \Rightarrow \frac{17 \lambda}{5}+1=\frac{7}{3}(\lambda+1) \\
& \Rightarrow 51 \lambda+15=35 \lambda+35 \\
& \Rightarrow 16 \lambda=20 \quad\left(\frac{7}{3}, \frac{8}{3}, \frac{5}{3}\right)
\end{aligned} \quad R\left(\frac{17}{5}, \frac{16}{5}, 7\right),
$$

SECTION 2 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks	$:$	+4	ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks	$:$	+3	If all the four options are correct but ONLY three options are chosen;
Partial Marks	$:$	+2 If three or more options are correct but ONLY two options are chosen, both of which	
are correct;			

Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

Aakashians Shine as Champions in JEE Advanced

2022

5. Let $M=\left(a_{i j}\right), i, j \in\{1,2,3\}$, be the 3×3 matrix such that $a_{i j}=1$ if $j+1$ is divisible by i, otherwise $a_{i j}=0$. Then which of the following statements is(are) true?
(A) M is invertible
(B) There exists a nonzero column matrix $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ such that $M\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right)$
(C) The set $\left\{X \in \mathbb{R}^{3}: M X=0\right\} \neq\{0\}$, where $0=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
(D) The matrix $(M-2 I)$ is invertible, where I is the 3×3 identity matrix

Answer (B, C)

Sol. $M=\left(a_{i j}\right), i, j \in\{1,2,3\}$,
$a_{i j}=1$ if $j+1$ is divisible by i
otherwise $a_{i j}=0$
$M=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$|M|=1(-1)-1(-1)=-1+1=0$
M is not invertible

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
-a_{1} \\
-a_{2} \\
-a_{3}
\end{array}\right]} \\
& {\left[\begin{array}{c}
a_{1}+a_{2}+a_{3} \\
a_{1}+a_{3} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
-a_{1} \\
-a_{2} \\
-a_{3}
\end{array}\right]}
\end{aligned}
$$

\Rightarrow There exist a column matrix (infinite possibilities)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{gathered}
x+y+z=0 \\
x+z=0 \\
y=0 \quad \text { Yes it is possible }
\end{gathered}
$$

$$
|M-2| \left\lvert\,=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right]=-1(3)-1(-2-1)=-3+3=0\right.
$$

2022

$$
\begin{aligned}
& a_{1}+a_{2}+a_{3}=-a_{1} \quad a_{1}+a_{3}=-a_{2} \quad a_{2}=-a_{3} \\
& \begin{array}{c}
a_{1}+a_{2}+a_{3}=0 \quad a_{2}+a_{3}=0 \\
a_{1}=0 \quad \& \quad a_{2}+a_{3}=0
\end{array}
\end{aligned}
$$

6. Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=[4 x]\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right)$, where $[x]$ denotes the greatest integer less than or equal to x. Then which of the following is(are) true?
(A) The function f is discontinuous exactly at one point in $(0,1)$
(B) There is exactly one point in $(0,1)$ at which the function f is continuous but NOT differentiable
(C) The function f is NOT differentiable at more than three points in $(0,1)$
(D) The minimum value of the function f is $-\frac{1}{512}$

Answer (A, B)

Sol. $f:(0,1) \rightarrow \mathbb{R}$
$f(x)=[4 x]\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right) \Rightarrow$ Critical point $=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$
Discontinuity at $x=\frac{3}{4}$
Continuous and differentiable at $x=\frac{1}{4}$
Continuous but non-differentiable at $x=\frac{1}{2}$
$\operatorname{LHD}\left(\right.$ at $\left.x=\frac{1}{4}\right)$
RHD (at $x=\frac{1}{4}$)
$\lim _{h \rightarrow 0^{+}} \frac{0-0}{-h}=0$

$$
\lim _{h \rightarrow 0^{+}} \frac{h^{2}\left(-\frac{1}{2}+h\right)}{h}=0
$$

$\operatorname{LHD}\left(\right.$ at $\left.x=\frac{1}{2}\right)$

$$
\operatorname{RHD}\left(\text { at } x=\frac{1}{2}\right)
$$

$$
\lim _{h \rightarrow 0^{+}} \frac{\left(\frac{1}{4}-h\right)^{2}(-h)-0}{-h}=\frac{1}{16} \quad \lim _{h \rightarrow 0^{+}} \frac{2\left(\frac{1}{4}+h\right)^{2} h-0}{h}=\frac{1}{8}
$$

Minimum -ve value will exist between $\frac{1}{4} \& \frac{1}{2}$
$f(x)=\left(x-\frac{1}{4}\right)^{2}\left(x-\frac{1}{2}\right) \quad \frac{1}{4} \leq x \leq \frac{1}{2}$
$f^{\prime}(x)=\left(x-\frac{1}{4}\right)\left(3 x-\frac{5}{4}\right) \quad \Rightarrow$ minima at $x=\frac{5}{12}$
$f\left(\frac{5}{12}\right)=\frac{1}{36} \times \frac{-1}{12}=\frac{-1}{432}$

2022

7. Let S be the set of all twice differentiable functions f from \mathbb{R} to \mathbb{R} such that $\frac{d^{2} f}{d x^{2}}(x)>0$ for all $x \in(-1,1)$. For $f \in S$, let X_{f} be the number of points $x \in(-1,1)$ for which $f(x)=x$. Then which of the following statements is(are) true?
(A) There exists a function $f \in S$ such that $X_{f}=0$
(B) For every function $f \in S$, we have $X_{f} \leq 2$
(C) There exists a function $f \in S$, such that $X_{f}=2$
(D) There does NOT exist any function f in S such that $X_{f}=1$

Answer (A, B, C)

Sol. $f "(x)>0 ; f(x)-x=0$
Number of solutions $=$?
Let $g(x)=f(x)-x \Rightarrow g^{\prime}(x)=f^{\prime}(x)-1$
$g^{\prime \prime}(x)=f^{\prime}(x)>0 \Rightarrow$ Concave
Possibilities

2022

SECTION 3 (Maximum Marks : 24)

- This section contains $\operatorname{SIX}(06)$ questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : $0 \quad$ In all other cases.
8. For $x \in \mathbb{R}$, let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then the minimum value of the function
$f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\int_{0}^{x \tan ^{-1} x} \frac{e^{(t-\cos t)}}{1+t^{2023}} d t$ is

Answer (0)

Sol. $f^{\prime}(x)=\frac{e^{\left[x \tan ^{-1} x-\cos \left(x \tan ^{-1} x\right)\right]}}{1+\left(x \tan ^{-1} x\right)^{2023}} \times\left(\frac{x}{1+x^{2}}+\tan ^{-1} x\right)$
$f^{\prime}(x)=g(x) \cdot h(x)$
where $g(x)=\frac{e^{\left[x \tan ^{-1} x-\cos \left(x \tan ^{-1} x\right)\right]}}{1+\left(x \tan ^{-1} x\right)^{2023}}>0 \forall x$
and $h(x)=\frac{x}{1+x^{2}}+\tan ^{-1} x<0$ for $x<0$

$$
\begin{array}{ll}
=0 & x=0 \\
>0 & x>0
\end{array}
$$

$\therefore f(x)$ has minimum at $x=0$
And $f(x)_{\text {min }}=f(0)=0$
9. For $x \in \mathbb{R}$, let $y(x)$ be a solution of the differential equation
$\left(x^{2}-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^{2}-5\right)^{2}$ such that $y(2)=7$.
Then the maximum value of the function $y(x)$ is
Answer (16)

- 42 -

Sol. $\left(x^{2}-5\right) \frac{d y}{d x}-2 x y=-2 x\left(x^{2}-5\right)^{2}$
$\frac{d y}{d x}+\left(\frac{-2 x}{x^{2}-5}\right) y=-2 x\left(x^{2}-5\right)$
I.F. $=\frac{1}{\left|x^{2}-5\right|}$

Solution of D.E. is $y \cdot \frac{1}{\left|x^{2}-5\right|}=\int-2 x \cdot \frac{x^{2}-5}{\left|x^{2}-5\right|} d x \Rightarrow \frac{y}{\left|x^{2}-5\right|}=\frac{x^{2}-5}{\left|x^{2}-5\right|}\left(-x^{2}\right)+C$
$\because y(2)=7 \Rightarrow C=3$
$\Rightarrow y=-x^{2}\left(x^{2}-5\right)+3\left|x^{2}-5\right| \Rightarrow y=f(x)$ is even function

- If $0<x<\sqrt{5}, y=-x^{4}+5 x^{2}-3 x^{2}+15=-x^{4}+2 x^{2}+15$

For increasing function $\frac{d y}{d x}>0 \Rightarrow x<1$

- If $x>\sqrt{5}, y=-x^{4}+5 x^{2}+3 x^{2}-15$

For increasing function $\frac{d y}{d x}>0 \Rightarrow x=\phi$
$\Rightarrow y(x)$ is increasing over $(0,1)$

$\Rightarrow f(x)_{\text {max }}=16$
10. Let X be the set of all five digit numbers formed using $1,2,2,2,4,4,0$. For example, 22240 is in X while 02244 and 44422 are not in X. Suppose that each element of X has an equal chance of being chosen. Let p be the conditional probability that an element chosen at random is a multiple of 20 given that it is a multiple of 5 . Then the value of $38 p$ is equal to

Answer (31)

- 43 -

Sol. Number of five-digit numbers divisible by 5 \qquad

$2221 \longrightarrow 4$
$2241 \longrightarrow 12$
$2441 \longrightarrow \frac{12}{38}$
Number of five-digit numbers divisible by 5 but 'not' by 20

Number of five-digit numbers divisible by 5 'and' $20=38-7=31$
$p=\frac{31}{38}$
$38 p=31$
11. Let $A_{1}, A_{2}, A_{3}, \ldots, A_{8}$ be the vertices of a regular octagon that lie on a circle of radius 2 . Let P be a point on the circle and let $P A_{i}$ denote the distance between the points P and A_{i} for $i=1,2, \ldots, 8$. If P varies over the circle, then the maximum value of the product $P A_{1} \cdot P A_{2} \ldots \cdot P A_{8}$, is

Answer (512)

Sol. $A_{1}, A_{2}, A_{3}, \ldots, A_{8}$ vertices of a regular octagon lying on a circle of radius 2.
Let say, $Z=(2)(1)^{1 / 8}$
$\Rightarrow Z^{8}=2^{8} \times 1$
$\Rightarrow Z^{8}-2^{8}=0$

Aakashians Shine as

 Champions in JEE Advanced

2022

$\Rightarrow Z=2,2 \alpha, 2 \alpha^{2}, 2 \alpha^{3}, \ldots, 2 \alpha^{7} ; \alpha=e^{i \frac{2 \pi}{8}}$
$\Rightarrow Z^{8}-2^{8}=(Z-2)(Z-2 \alpha)\left(Z-2 \alpha^{2}\right)\left(Z-2 \alpha^{3}\right) \ldots\left(Z-2 \alpha^{7}\right)$
$\Rightarrow\left|Z^{8}-2^{8}\right|=|Z-2||Z-2 \alpha| \ldots\left|Z-2 \alpha^{7}\right|$
But $\left|Z^{8}+\left(-2^{8}\right)\right| \leq|Z|^{8}+2^{8}$
$\Rightarrow|Z-2||Z-2 \alpha| \ldots\left|Z-2 \alpha^{7}\right| \leq|Z|^{8}+2^{8}$
$\leq 2^{8}+2^{8}$
$\leq 2^{9}$
$\Rightarrow \operatorname{Max}\left(P A_{1} \cdot P A_{2} \ldots . P A_{8}\right)=2^{9}$
12. Let $R=\left\{\left(\begin{array}{lll}a & 3 & b \\ c & 2 & d \\ 0 & 5 & 0\end{array}\right): a, b, c, d \in\{0,3,5,7,11,13,17,19\}\right\}$. Then the number of invertible matrices in R is

Answer (3780)

Sol. $|R|=-5\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
$|R|$ can be zero in following cases:
(i) Two of a, b, c, d are zeroes which can be (a and $b)$, $(b$ and $d)$, (d and c) or (c and a)
$\rightarrow 4 \times 7^{2}$ ways $=196$
(ii) Any three of a, b, c, d are zeroes
$\rightarrow{ }^{4} C_{3} \times 7=28$
(iii) All four of a, b, c, d are zeroes
$\rightarrow 1$
(iv) All four of a, b, c, d are non-zero but same number

$$
\rightarrow 7
$$

(v) When two are alike and 2 other are alike (non-zero) $\rightarrow 7 \mathrm{C}_{2} \times 2 \times 2=84$

Number of invertible matrices $=8^{4}-196-28-1-7-84=3780$
13. Let C_{1} be the circle of radius 1 with center at the origin. Let C_{2} be the circle of radius r with center at the point $A=(4,1)$, where $1<r<3$. Two distinct common tangents $P Q$ and $S T$ of C_{1} and C_{2} are drawn. The tangent $P Q$ touches C_{1} at P and C_{2} at Q. The tangent $S T$ touches C_{1} at S and C_{2} at T. Midpoints of the line segments $P Q$ and $S T$ are joined to form a line which meets the x-axis at a point B. If $A B=\sqrt{5}$, then the value of r^{2} is

Aakashians Shine as Champions in JEE Advanced

2022

- 45 -

Answer (2)
Sol.

Let M and N be midpoints of $P Q$ and $S T$ respectively.
$\Rightarrow M N$ is a radical axis of two circles
$C_{1}: x^{2}+y^{2}=1$
$C_{2}:(x-4)^{2}+(y-1)^{2}=r^{2}$
$\Rightarrow x^{2}+y^{2}-8 x-2 y+17-r^{2}=0$
From (i) and (ii);
Equation of $M N: 8 x+2 y-18+r^{2}=0$
$\Rightarrow B$ is on x-axis $\Rightarrow B\left(\frac{18-r^{2}}{8}, 0\right)$
$A B=\sqrt{5}$
$\sqrt{\left(\frac{18-r^{2}}{8}-4\right)^{2}+1}=\sqrt{5}$
(By distance formed a)
\Rightarrow On solving $r^{2}=2$

SECTION 4 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
Zero Marks : 0 In all other cases.

Aakashians Shine as

 Champions in JEE Advanced

2022

Consider an obtuse angled triangle $A B C$ in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1 .
(There are two questions based on PARAGRAPH " I ", the question given below is one of them)
14. Let a be the area of the triangle $A B C$. Then the value of $(64 a)^{2}$ is

Answer (1008)

Sol.

Let sides be $a-d, a, a+d$
$A-C=\frac{\pi}{2}$
$R=1$
Now

$$
\frac{a+d}{\sin A}=\frac{a}{\sin B}=\frac{a-d}{\sin C}=2
$$

$\because \quad A=\frac{\pi}{2}+C$
$\sin A=\sin \left(\frac{\pi}{2}+C\right)$
$\sin A=\cos C$.
$\frac{a+d}{2}=\sqrt{1-\sin ^{2} C}$
$\left(\frac{a+d}{2}\right)^{2}=1-\left(\frac{a-d}{2}\right)^{2}$
$\frac{2\left(a^{2}+d^{2}\right)}{4}=1$

2022

$$
\begin{equation*}
a^{2}+d^{2}=2 \tag{1}
\end{equation*}
$$

Now $\cos B=\frac{(a-d)^{2}+(a+d)^{2}-a^{2}}{2\left(a^{2}-d^{2}\right)}$

$$
\sqrt{1-\sin ^{2} B}=\frac{2\left(a^{2}+d^{2}\right)-a^{2}}{2\left(a^{2}-d^{2}\right)}
$$

$$
\sqrt{1-\frac{a^{2}}{4}}=\frac{4-a^{2}}{2\left(a^{2}-d^{2}\right)}
$$

$$
\left(\because a^{2}+d^{2}=2\right)
$$

$\left(a^{2}-d^{2}\right)^{2}=4-a^{2}$
From (1) \& (2)

$$
a^{2}=\frac{7}{4}, d^{2}=\frac{1}{4}
$$

Area of triangle
$\Delta=\frac{a\left(a^{2}-d^{2}\right)}{4}$
$\alpha=\frac{\sqrt{7}}{2} \times \frac{6}{4 \times 4}$
$(64 \alpha)^{2}=1008$

PARAGRAPH "I"

Consider an obtuse angled triangle $A B C$ in which the difference between the largest and the smallest angle is $\frac{\pi}{2}$ and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1 .
(There are two questions based on PARAGRAPH " I ", the question given below is one of them)
15. Then the inradius of the triangle $A B C$ is

Answer (0.25)

Sol. $r=\frac{\Delta}{S}=\frac{\frac{\sqrt{7}}{2} \times \frac{6}{16}}{\frac{3}{2} \times \frac{\sqrt{7}}{2}}=\frac{4}{16}=\frac{1}{4}=0.25$

PARAGRAPH "Il"

Consider the 6×6 square in the figure. Let $A_{1}, A_{2}, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that A_{i} and A_{j} are friends if they are adjacent along a row or along a column. Assume that each point A_{i} has an equal chance of being chosen.

(There are two questions based on PARAGRAPH "Il", the question given below is one of them)
16. Let p_{i} be the probability that a randomly chosen point has i many friends, $i=0,1,2,3,4$. Let X be a random variable such that for $i=0,1,2,3,4$, the probability $P(X=i)=p_{i}$. Then the value of $7 E(X)$ is

Answer (24)
Sol.

Number of points having 0 friend $=0$
Number of points having 1 friend $=0$
Number of points having 2 friends $=4$
Number of points having 3 friends $=5 \times 4=20$

Aakashians Shine as

 Champions in JEE Advanced

2022

2021

Number of points having 4 friends $=49-24=25$
\therefore

p_{i}	0	0	$4 / 49$	$20 / 49$	$25 / 49$
X_{i}	0	1	2	3	4

$$
\begin{aligned}
7(E(X)) & =7\left(0+0+\frac{4}{49} \times 2+\frac{20}{49} \times 3+\frac{25}{49} \times 4\right) \\
& =\left(\frac{100+60+8}{49}\right) \\
& =24
\end{aligned}
$$

PARAGRAPH "Il"

Consider the 6×6 square in the figure. Let $A_{1}, A_{2}, \ldots, A_{49}$ be the points of intersections (dots in the picture) in some order. We say that A_{i} and A_{j} are friends if they are adjacent along a row or along a column. Assume that each point A_{i} has an equal chance of being chosen.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)
17. Two distinct points are chosen randomly out of the points $A_{1}, A_{2}, \ldots \ldots, A_{49}$. Let p be the probability that they are friends. Then the value of $7 p$ is

Answer (0.50)

Sol. Number of ways of selecting 2 adjacent dots in 1 row $=6$
Similarly, number of ways of selecting 2 adjacent dots in I column $=6$
\therefore Number of ways of selecting 2 adjacent dots from the matrix $=6 \times 7+6 \times 7=84$
$\therefore \quad p=\frac{84}{{ }^{49} C_{2}}=\frac{84 \times 2}{49 \times 48}$
$7 p=\frac{7 \times 84 \times 2}{49 \times 48}=\frac{1}{2}$
0.50 is answer

2022

2021

2020

