

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

31. Identify the product formed (A and E)

Me
$$\begin{array}{c}
 & \text{Me} \\
 & \text{No}_{2}
\end{array}$$

$$\begin{array}{c}
 & \text{Br}_{2} \\
 & \text{No}_{2}
\end{array}$$

$$\begin{array}{c}
 & \text{NaNO}_{2}/\text{HCI} \\
 & \text{273-278K}
\end{array}$$

$$\begin{array}{c}
 & \text{H}_{3}\text{PO}_{2}/\text{H}_{2}\text{O} \\
 & \text{(ii) H}_{3}\text{O}^{+}
\end{array}$$

$$\begin{array}{c}
 & \text{(ii) KMnO}_{4}/\text{KOH} \\
 & \text{(iii) H}_{3}\text{O}^{+}
\end{array}$$

(1)
$$A = \bigcup_{NO_2}^{Me} Br$$
, $E = \bigcup_{NO_2}^{Me} Br$

(2)
$$A = \bigcup_{NO_2}^{Me} Br$$
, $E = \bigcup_{NO_2}^{COOH} Br$

(3)
$$A = Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

(4)
$$A = \bigcup_{NO_2}^{Me} Br$$
, $E = \bigcup_{OH}^{COOH} Br$

Answer (2)

Sol.
$$Me$$
 Br_2
 NO_2
 NO_2

- 32. A cubic solid is made up of two elements X and Y. Atoms of X are present on every alternate corner and one at the center of cube. Y is at $\frac{1}{3}$ rd of the total faces. The empirical formula of the compound is
 - (1) $XY_{2.5}$
- (2) $X_{1.5}Y_2$
- $(3) X_2Y_{1.5}$
- (4) X_{2.5}Y

Answer (No answer is correct)

Sol. Number of X particles = $4 \times \frac{1}{8} + 1 = 1.5$

Number of Y particles = $6 \times \frac{1}{3} \times \frac{1}{2} = 1$

∴ Empirical formula = $X_{1.5}Y_1 = X_3Y_2$

No answer is correct

- 33. Reaction of thionyl chloride with white phosphorus forms a compound [A], which on hydrolysis gives [B], a dibasic acid. [A] and [B] are respectively
 - (1) POCl₃ and H₃PO₄
- (2) PCl₃ and H₃PO₃
- (3) PCI₅ and H₃PO₄
- (4) P₄O₆ and H₃PO₃

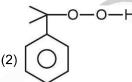
Answer (2)

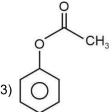
JEE (Main)-2023: Phase-1 (25-01-2023)-Morning

Sol.
$$P_4 + 8SOCl_2 \longrightarrow 4PCl_3 + 4SO_2 + 2S_2Cl_2$$

$$\begin{array}{ccc} \operatorname{PCI}_3 & \xrightarrow{\operatorname{Hydrolysis}} & \operatorname{H_3PO}_3 \\ & & \operatorname{Dibasic acid} \end{array}$$

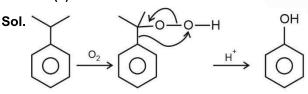
- 34. '25 volume' hydrogen peroxide means
 - (1) 1 L marketed solution contains 250 g of H₂O₂.
 - (2) 100 mL marketed solution contains 25 g of H_2O_2
 - (3) 1 L marketed solution contains 25 g of H₂O₂.
 - (4) 1 L marketed solution contains 75 g of H₂O₂.


Answer (4)


Sol. Molarity of
$$H_2O_2$$
 solⁿ = $\frac{\text{volume strength}}{11.2}$

$$=\frac{25}{11.2}=2.23\,\mathrm{M}$$

- \therefore amount of H₂O₂ in one litre = 2.23 × 34 = 75 gm
- 35. In the cumene to phenol preparation in presence of air, the intermediate is



Answer (2)

Cumene

Intermediate

- 36. The radius of the 2nd orbit of Li²⁺ is x. The expected radius of the 3rd orbit of Be³⁺ is

Answer (3)

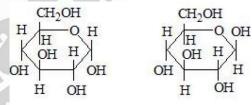
Sol. $r_{L_1^{2+}} = r_0 \times \frac{2^2}{3} = x \Rightarrow r_0 = \frac{3x}{4}$

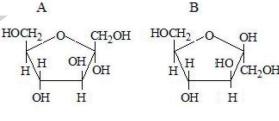
$$r_{Be^{3+}}^{} = r_0^{} \times \frac{3^2}{4}$$

$$r_{Be^{3+}} = \frac{3x}{4} \times \frac{3^2}{4} = \frac{27x}{16}$$

- 37. Which one of the following reactions does not occur during extraction of copper?
 - (1) CaO + SiO₂ \rightarrow CaSiO₃
 - (2) FeO + SiO₂ \rightarrow FeSiO₃
 - (3) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$
 - (4) $2\text{FeS} + 3O_2 \rightarrow 2 \text{ FeO} + 2SO_2$

Answer (1)


Sol. In the extraction of copper FeO is removed as slag FeSiO₃


Hence the reaction

does not occur during extraction of copper

Match items of Row I with those of Row II.

Row L:

D

Row II:

(i) α-D-(–)-Fructofuranose

C

- (ii) β-D-(–)-Fructofuranose
- (iii) α -D-(–) Glucopyranose,
- (iv) β-D-(–)-Glucopyranose

Correct match is

- (1) $A \rightarrow iii$, $B \rightarrow iv$, $C \rightarrow i$, $D \rightarrow ii$
- (2) $A \rightarrow i$, $B \rightarrow ii$, $C \rightarrow iii$, $D \rightarrow iv$
- (3) $A \rightarrow iii$, $B \rightarrow iv$, $C \rightarrow ii$, $D \rightarrow i$
- (4) $A \rightarrow iv$, $B \rightarrow iii$, $C \rightarrow i$, $D \rightarrow ii$

Answer (1)

Sol. (i) α -D-(–)-Fructofuranose –

(ii) β-D-(–)-Fructofuranose –

(iii) α -D-(–)-Glucopyranose –

(iv) β -D-(–)-Glucopyranose –

- 39. Which of the following statements is incorrect for antibiotics?
 - (1) An antibiotic should promote the growth or survival of microorganisms.
 - (2) An antibiotic is a synthetic substance produced as a structural analogue of naturally occurring antibiotic.
 - (3) An antibiotic should be effective in low concentrations.
 - (4) An antibiotic must be a product of metabolism.

Answer (1)

Sol. An antibiotic inhibit the growth or survival of microorganism.

Except (1) all the statement are correct

40. Match List I with List II

LIST I Elements		LIST II Colour imparted to the flame	
A.	К	I.	Brick Red
B.	Ca	II.	Violet
C.	Sr	III.	Apple Green
D.	Ва	IV.	Crimson Red

Choose the correct answer from the options given below:

- (1) A-II, B-I, C-IV, D-III (2) A-IV, B-III, C-II, D-I
- (3) A-II, B-IV, C-I, D-III (4) A-II, B-I, C-III, D-IV

Answer (1)

Sol.

	Element	Colour imparted to the flame
(A)	K	Violet
(B)	Ca	Brick red
(C)	Sr	Crimson red
(D)	Ва	Apple green

41. The compound which will have the lowest rate towards nucleophilic aromatic substitution on treatment with OH⁻ is

(1)
$$\bigcirc$$
 (2) \bigcirc NO₂ (2) \bigcirc NO₂ (3) \bigcirc NO₂ (4) \bigcirc NO₂

Answer (2)

Sol. Aryl halides having E.W.G at O-or P-position have greater rate than the m-isomers towards nucleophilic aromatic substitution.

Hence the correct answer is (2)

JEE (Main)-2023: Phase-1 (25-01-2023)-Morning

42. $\stackrel{?}{p}$ PhCOOH + PhCH₂OH $\stackrel{?}{Q}$ R

The correct sequence of reagents for the preparation of Q and R is:

- (1) (i) KMnO₄, OH⁻; (ii) Mo₂O₃, Δ ; (iii) NaOH; (iv) H₃O⁺
- (2) (i) Cr_2O_3 , 770 K, 20 atm; (ii) CrO_2Cl_2 , H_3O^+ ; (iii) NaOH; (iv) H_3O^+
- (3) (i) CrO_2Cl_2 , H_3O^+ ; (ii) Cr_2O_3 , 770 K, 20 atm; (iii) NaOH; (iv) H_3O^+
- (4) (i) Mo_2O_3 , Δ ; (ii) Mo_2O_3 , Δ ; (iii) NaOH; (iv) H_3O^+

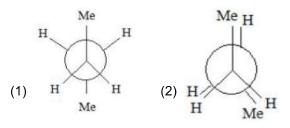
Answer (2)

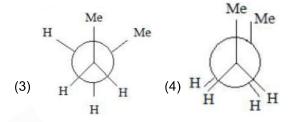
Sol.
$$Cr_2O_3$$
, 770K CrO_2Cl_2 , H_3O^+
 CrO_2Cl_2 , H_3O^+
 CHO
 CHO

43. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**:

Assertion A: Acetal/Ketal is stable in basic medium.

Reason R: The high leaving tendency of alkoxide ion gives the stability to acetal/ketal in basic medium.


In the light of the above statements, choose the correct answer from the options given below:


- Both A and R are true but R is NOT the correct explanation of A
- (2) Both A and R are true and R is the correct explanation of A
- (3) A is false but R is true
- (4) A is true but R is false

Answer (4)

Sol. Acetal/Ketal are known to be quite stable under basic conditions but readily hydrolyse to the corresponding carbonyl compound (aldehyde/keton) and alcohol under acidic condition

44. Which of the following conformations will be the most stable?

Answer (1)

Sol. Correct stability order of butane is Anti > Gauche > Partially eclipsed > Fully eclipsed Hence the correct answer is (1)

- 45. The correct order in aqueous medium of basic strength in case of methyl substituted amines is:
 - (1) $Me_2NH > MeNH_2 > Me_3N > NH_3$
 - (2) $Me_3N > Me_2NH > MeNH_2 > NH_3$
 - (3) $NH_3 > Me_3N > MeNH_2 > Me_2NH$
 - (4) $Me_2NH > Me_3N > MeNH_2 > NH_3$

Answer (1)

Sol. The correct order of basic strength in aqueous medium is

 $Me_2NH > MeNH_2 > Me_3N > NH_3$

- 46. Compound A reacts with NH₄Cl and forms a compound B. Compound B reacts with H₂O and excess of CO₂ to form compound C which on passing through or reaction with saturated NaCl solution forms sodium hydrogen carbonate. Compound A, B and C, are respectively
 - (1) $Ca(OH)_2$, NH_4^{\oplus} , $(NH_4)_2CO_3$
 - (2) Ca(OH)₂, NH₃, NH₄HCO₃
 - (3) $CaCl_2$, NH_4^{\oplus} , $(NH_4)_2CO_3$
 - (4) CaCl₂, NH₃, NH₄HCO₃

Answer (2)

Sol.
$$Ca(OH)_2 + NH_4CI \longrightarrow CaCI_2 + NH_3 + H_2O$$
(B)

$$NH_3 + H_2O + CO_2 \longrightarrow NH_4HCO_3$$

Excess (C)

$$NH_4HCO_3 + NaCl \longrightarrow NH_4Cl + NaHCO_3$$

Match the List-I with List-II:

List-I

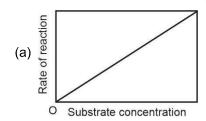
List-II

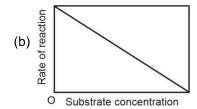
Cations

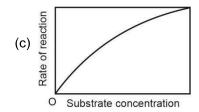
Group reagents

- Pb²⁺, Cu²⁺
- (i) H₂S gas in presence of dilute HCI
- B. Al³⁺, Fe³⁺
- (ii) (NH₄)₂CO₃ in presence of NH₄OH
- C. Co²⁺, Ni²⁺
- (iii) NH₄OH in presence of NH₄CI
- D. Ba²⁺, Ca²⁺
- (iv) H₂S in presence of NH₄OH

Correct match is


- (1) $A \rightarrow i$; $B \rightarrow iii$; $C \rightarrow iv$; $D \rightarrow ii$
- (2) $A \rightarrow i$; $B \rightarrow iii$; $C \rightarrow ii$; $D \rightarrow iv$
- (3) $A \rightarrow iv$; $B \rightarrow ii$; $C \rightarrow iii$; $D \rightarrow i$
- (4) $A \rightarrow iii$; $B \rightarrow i$; $C \rightarrow iv$; $D \rightarrow ii$


Answer (1)

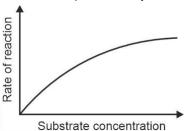

Sol. Cations

Group reagents

- A. Pb²⁺, Cu²⁺
- (i) H₂S gas in presence of dilute HCl
- B. Al³⁺, Fe³⁺
- (iii) NH₄OH in presence of NH₄CI
- C. Co²⁺, Ni²⁺
- (iv) H₂S in presence of NH₄OH
- D. Ba²⁺, Ca²⁺
- (ii) (NH₄)₂CO₃ in presence of NH₄OH
- 48. The variation of the rate of an enzyme catalyzed with substrate concentration is correctly represented by graph

reaction (d) ō Rate 0 Substrate concentration

(1) (b)


(2) (a)

(3) (d)

(4) (c)

Answer (4)

Sol. The correct plot for enzyme catalysed reaction is

Hence, correct answer is option (4).

Some reactions of NO₂ relevant to photochemical smog formation are

$$NO_2 \xrightarrow{\text{sunlight } X} + Y$$

$$\downarrow A$$

$$B$$

Identify A, B, X and Y.

- (1) $X = NO, Y = [O], A = O_2, B = N_2O_3$
- (2) $X = [O], Y = NO, A = O_2, B = O_3$
- (3) $X = \frac{1}{2}O_2$, $Y = NO_2$, $A = O_3$, $B = O_2$
- (4) $X = N_2O$, Y = [O], $A = O_3$, B = NO

Answer (2)

Sol.
$$NO_2 \xrightarrow{hv} O + NO (X) (Y)$$

$$\downarrow O_2(A)$$

$$O_3 (B)$$

- 50. Inert gases have positive electron gain enthalpy. Its correct order is

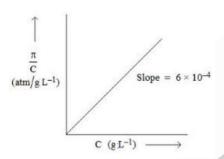
 - (1) He < Xe < Kr < Ne (2) Xe < Kr < Ne < He

 - (3) He < Kr < Xe < Ne (4) He < Ne < Kr < Xe

Answer (1)

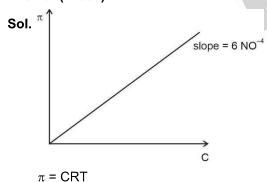
Sol.

Electron gain	He	Ne	Ar	Kr	Xe
Enthalpy/ kJ mol ⁻¹	48	116	96	96	77


JEE (Main)-2023 : Phase-1 (25-01-2023)-Morning

Hence, correct order of positive electron gain enthalpy is

SECTION - B


Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

51. The osmotic pressure of solutions of PVC in cyclohexanone at 300 K are plotted on the graph. The molar mass of PVC is _____ g mol⁻¹ (Nearest integer)

(Given : $R = 0.083 L atm K^{-1} mol^{-1}$)

Answer (41500)

$$\pi = \frac{\mathsf{mole}}{\mathsf{volume}} \times \mathsf{RT}$$

$$\pi = \frac{mole}{volume} \times \frac{mw}{mw} \times RT$$

$$\pi = \frac{\text{mass}}{\text{volume}} \times \frac{\text{RT}}{\text{my}}$$

$$\pi(atm) = \frac{RT}{mw} \times C(gm \, lit^{-1})$$

slope =
$$\frac{RT}{mw} = 6 \times 10^{-4}$$

mw = 41500

52. The density of a monobasic strong acid (Molar mass 24.2 g/mol) is 1.21 kg/L. The volume of its solution required for the complete neutralization of 25 mL of 0.24 M NaOH is _____ × 10⁻² mL (Nearest integer)

Answer (12)

Sol. m.eq of NaOH = m.eq of monobasic acid $25 \times 0.24 \times 1 = 1 \times V \times molarity$

Molarity =
$$\frac{1.21 \times 10^3}{24.2}$$
 = 50 M

$$\therefore V = \frac{25 \times 0.24}{50} = 0.12 \text{ mL}$$

$$= 12 \times 10^{-2} \text{ mL}$$

53. A litre of buffer solution contains 0.1 mole of each of NH $_3$ and NH $_4$ CI. On the addition of 0.02 mole of HCI by dissolving gaseous HCI, the pH of the solution is found to be _____ × 10^{-3} (Nearest integer)

[Given :
$$pK_b(NH_3) = 4.745$$

$$log 2 = 0.301$$

$$\log 3 = 0.477$$

$$T = 298 K1$$

Answer (9079)

Sol.
$$NH_3 + HCI \rightarrow NH_4CI$$

$$pOH = pK_b + log \left[\frac{0.1 + 0.02}{0.1 - 0.02} \right]$$

=
$$4.745 + \log\left(\frac{3}{2}\right) = 4.745 + [0.477 - 0.301]$$

$$= 4.745 + 0.176$$

$$pOH = 4.921$$

$$pH = 14 - pOH$$

$$= 14 - 4.921 = 9.079$$

pH =
$$9079 \times 10^{-3}$$

54. The number of paramagnetic species from the following is _____.

$$[Ni(CN)_{4}]^{2-},[Ni(CO)_{4}],[NiCI_{4}]^{2-},$$

$$[Fe(CN)_6]^{4-}, [Cu(NH_3)_4]^{2+}$$

$$[Fe(CN)_6]^{3-}$$
 and $[Fe(H_2O)_6]^{2+}$

Answer (04)

Sol. Species Magnetic property

[Ni(CN) ₄] ²⁻	Diamagnetic
[Ni(CO) ₄]	Diamagnetic
[NiCl ₄] ²⁻	Paramagnetic
[FeCN) ₆] ⁴⁻	Diamagnetic
[Fe(CN) ₆] ³⁻	Paramagnetic
$Fe(H_2O)_6]^{2+}$	Paramagnetic
$[Cu(NH_3)_4]^{2+}$	Paramagnetic

55. In sulphur estimation, 0.471 g of an organic compound gave 1.4439 g of barium sulphate. The percentage of sulphur in the compound is _____ (Nearest Integer)

(Given: Atomic mass Ba: 137 u, S: 32 u, O:16 u)

Answer (42)

Sol. S% =
$$\frac{32}{233} \times \frac{1.4439}{0.471} \times 100 = 42\%$$

56. For the first order reaction $A \rightarrow B$, the half life is 30 min. The time taken for 75% completion of the reaction is _____ min. (Nearest integer)

Given:
$$log 2 = 0.3010$$

 $log 3 = 0.4771$
 $log 5 = 0.6989$

Answer (60)

Sol. Time taken for 75% completion

$$= 2 \times t_{1/2}$$

$$= 2 \times 30$$

57. How many of the following metal ions have similar value of spin only magnetic moment in gaseous state?

(Given : Atomic number : V, 23; Cr, 24; Fe, 26; Ni, 28) V³⁺, Cr³⁺, Fe²⁺, Ni³⁺

Answer (02)

Sol.	lon	Spin only magnetic moment
	V^{3+}	$\sqrt{8}$
	Cr ³⁺	$\sqrt{15}$
	Fe^{2^+}	$\sqrt{24}$
	${\rm Ni}^{3+}$	$\sqrt{15}$

58. Consider the cell

JEE (Main)-2023 : Phase-1 (25-01-2023)-Morning

Given
$$E^o_{Fe^{3+}/Fe^{2+}} = 0.771\,V$$
 and $E^{o+}_{H\ /1/2\ H_2} = 0\ V$, T = 200 V

If the potential of the cell is 0.712 V, the ratio of concentration of Fe^{2+} to Fe^{3+} is _____ (Nearest integer)

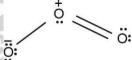
Answer (10)

Sol. Reaction at anode
$$\frac{1}{2}H_2 \longrightarrow H^+ + e^-$$

Reaction at Cathode $Fe^{3+}_{(aq)} + e^{-} \rightarrow Fe^{2+}_{(aq)}$

$$E_{cell} = E_{cell}^{o} - \frac{0.0591}{1} log \left[\frac{[H^{+}] [Fe^{2+}]}{[Fe^{3+}] [pH_{2}]^{1/2}} \right]$$

$$0.712 = 0.771 - \frac{0.0591}{1} log \left(\frac{[Fe^{2+}]}{[Fe^{3+}]} \right)$$


$$-0.059 = -0.0591 log \left(\frac{[Fe^{2^{+}}]}{[Fe^{3^{+}}]} \right)$$

$$\therefore \frac{[Fe^{2+}]}{[Fe^{3+}]} = 10^1 = 10$$

59. The total number of lone pairs of electrons on oxygen atoms of ozone is_____

Answer (06)

Sol.

60. An athlete is given 100 g of glucose (C₆H₁₂O₆) for energy. This is equivalent to 1800kJ of energy. The 50% of this energy gained is utilized by the athlete for sports activities at the event. In order to avoid storage of energy, the weight of extra water he would need to perspire is _____ g (Nearest integer)

Assume that there is no other way of consuming stored energy.

Given : The enthalpy of evaporation of water is $45 \ \text{kJ} \ \text{mol}^{-1}$

Molar mass of C, H & O are 12, 1 and 16 g mol⁻¹

Answer (360)

Sol. wt of extra water he would need to perspire

$$= \frac{1800}{2} \times \frac{18}{45}$$

$$= 20 \times 18 = 360 \text{ gm}$$