

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 31. Cobalt chloride when dissolved in water forms pink coloured complex X which has octahedral geometry. This solution on treating with conc. HCl forms deep blue complex, Y which has a Z geometry. X, Y and Z, respectively, are
 - (1) $X = [Co(H_2O)_6]^{3+}$, $Y = [CoCl_6]^{3-}$, Z = Octahedral
 - (2) $X = [Co(H_2O)_4Cl_2]^+$, $Y = [CoCl_4]^{2-}$, Z = Tetrahedral
 - (3) $X = [Co(H_2O)_6]^{2+}$, $Y = [CoCl_6]^{3-}$, Z = Octahedral
 - (4) $X = [Co(H_2O)_6]^{2+}$, $Y = [CoCl_4]^{2-}$, Z = Tetrahedral

Answer (4)

Sol.
$$CoCl_2 \xrightarrow{H_2O} [Co(H_2O)_6]^{2^+}(X)$$
(Octahedral)
$$\downarrow Conc HCl$$

$$[CoCl_4]^{2^-}(Y)$$
Tetrahedral (Z)

Hence correct answer is option (4)

- 32. The correct order of basicity of oxides of vanadium is
 - (1) $V_2O_3 > V_2O_5 > V_2O_4$ (2) $V_2O_4 > V_2O_3 > V_2O_5$
 - (3) $V_2O_3 > V_2O_4 > V_2O_5$ (4) $V_2O_5 > V_2O_4 > V_2O_3$

Answer (3)

Sol. $V_2O_3 > V_2O_4 > V_2O_5$

As positive oxidation state increases acidic nature increases and basic nature decreases.

33. Adding surfactants in non polar solvent, the micelles structure will look like

(4) b

Answer (2)

(3) d

Polar

Sol. O Non-polar

In non-polar solvent non-polar part will point out

Non-polar part will interact with non-polar solvent.

- 34. Which one of the following statements is correct for electrolysis of brine solution?
 - (1) Cl₂ is formed at cathode
 - (2) H₂ is formed at anode
 - (3) O2 is formed at cathode
 - (4) OH-is formed at cathode

Answer (4)

Sol. During electrolysis of Brine

$$2NaCI \rightarrow Na^+ + CI^-$$

 $2H_2O \rightarrow 2H^+ + 2OH^-$

Cathode
$$2H^+ + 2e \rightarrow H_2$$

Anode
$$2Cl^{-} \rightarrow Cl_2 + 2e$$
.

At cathode H₂ is liberated

At anode Cl₂ is formed.

35. When Cu²⁺ ion is treated with KI, a white precipitate, X appears in solution. The solution is titrated with sodium thiosulphate, the compound Y is formed. X and Y respectively are

(1)
$$X = Cul_2$$
 $Y = Na_2S_2O_3$
(2) $X = Cul_2$ $Y = Na_2S_4O_6$
(3) $X = Cu_2l_2$ $Y = Na_2S_4O_5$
(4) $X = Cu_2l_2$ $Y = Na_2S_4O_6$

Answer (4)

Sol.
$$2Cu^{2+} + 4KI \longrightarrow Cu_2I_2 + I_2$$

$$I_2 + Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$$

$$X = Cu_2I_2$$

$$Y = Na_2S_4O_6$$

- 36. Which transition in the hydrogen spectrum would have the same wavelength as the Balmer type transition from n = 4 to n = 2 of He⁺ spectrum
 - (1) n = 2 to n = 1
- (2) n = 3 to n = 4
- (3) n = 1 to n = 2
- (4) n = 1 to n = 3

Answer (1)

Sol.
$$\overline{v}_{He^+} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] z^2$$

$$= R \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] 4$$

$$= R \left[\frac{1}{1} - \frac{1}{4} \right]$$

$$= \frac{3}{4} R$$

$$\overline{v}_{2 \to 1} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$= R \left[\frac{1}{1} - \frac{1}{(2)^2} \right]$$

$$= \frac{3}{4} R$$

37. An organic compound 'A' with empirical formula C_6H_6O gives sooty flame on burning. Its reaction with bromine solution in low polarity solvent results in high yield of B. B is

Answer (4)

Sol.

$$\begin{array}{c|c}
OH & OH \\
\hline
Br_2 & Br_2 \\
\hline
Low polarity \\
solvent & Br \\
\hline
(major)
\end{array}$$

38. Match List I with List II

	List I		List II
A.	XeF ₄	l.	See-saw
B.	SF ₄	II.	Square planar
C.	NH ₄ ⁺	III.	Bent T-shaped
D.	BrF ₃	IV.	Tetrahedral

Choose the correct answer from the options given below:

- (1) A IV, B III, C II, D I
- (2) A II, B I, C III, D IV
- (3) A II, B I, C IV, D III
- (4) A IV, B I, C II, D III

Answer (3)

Sol.

	Υ,			Hybridisation
XeF ₄	7	Square planar	_	sp³d²
SF ₄	_	See Saw	_	sp³d
NH ₄		Tetrahedral	_	sp ³
BrF ₃		Bent-T-shape	-	sp³d

39. Consider the following reaction

Propanal + Methanal
$$\xrightarrow{\text{(i) dil.NaOH}}$$
 Product B
 $\xrightarrow{\text{(ii) }\Delta}$ $\xrightarrow{\text{(iii) NaCN}}$ $(C_5H_8O_3)$

The correct statement for product B is. It is

- racemic mixture and gives a gas with saturated NaHCO₃ solution
- (2) optically active alcohol and is neutral
- (3) optically active and adds one mole of bromine
- (4) racemic mixture and is neutral

Answer (1)

Sol.
$$CH_3-CH_2CHO + HCHO \xrightarrow{\text{dil.base}} CH_3-CH-CHO \xrightarrow{\text{CH}_2OH} CH_2OH \xrightarrow{\text{CH}_3-C-CH-CN} \leftarrow \xrightarrow{\text{HCN}} CH_3-C-CHO \xrightarrow{\text{CH}_2} CH_2 \xrightarrow{\text{CH}_2} CH_2 \xrightarrow{\text{CH}_3-C-CH-CN} CH_3-C-CHO \xrightarrow{\text{CH}_3-C-CH-CN} CH_2 \xrightarrow{\text{CH}_3-C-CH-CN} CH_3-C-CH-COOH$$

Racemic mixture effervescence with NaHCO₃

- 40. H₂O₂ acts as a reducing agent in
 - (1) $2Fe^{2+} + 2H^+ + H_2O_2 \rightarrow 2Fe^{3+} + 2H_2O$
 - (2) $Mn^{2+} + 2 H_2O_2 \rightarrow MnO_2 + 2H_2O$
 - (3) $Na_2S + 4H_2O_2 \rightarrow Na_2SO_4 + 4H_2O$
 - (4) $2NaOCI + H_2O_2 \rightarrow 2 NaCI + H_2O + O_2$

Answer (4)

Sol. H₂O₂ act as a reducing agent

$$2 \stackrel{+1}{Na} \stackrel{-2}{O} \stackrel{+1}{C} I + H_2O_2 \longrightarrow 2 NaCI + H_2O + O_2$$

CI from (+1) state changes to CI-1

41. Identify X, Y and Z in the following reaction. (Equation not balanced)

$$CIO^{\bullet} + NO_2 \rightarrow X \xrightarrow{H_2O} Y + Z$$

- (1) $X = CIONO_2$, Y = HOCI, $Z = NO_2$
- (2) $X = CIONO_2$, Y = HOCI, $Z = HNO_3$
- (3) $X = CINO_3$, $Y = CI_2$, $Z = NO_2$
- (4) $X = CINO_2$, Y = HCI, $Z = HNO_3$

Answer (2)

$$\textbf{Sol.} \ \, \text{CIO} + \text{NO}_2 {\longrightarrow} {\text{CIONO}_2} \\ (\text{X})$$

$$CIONO_2 \xrightarrow{\quad H_2O\quad } HOCI + HNO_3$$

$$\stackrel{(Y)}{(Y)} \stackrel{(Z)}{(Z)}$$

- 42. The correct increasing order of the ionic radii is
 - (1) $K^+ < S^{2-} < Ca^{2+} < Cl^-$ (2) $Cl^- < Ca^{2+} < K^+ < S^{2-}$
 - (3) $Ca^{2+} < K^+ < Cl^- < S^{2-}$ (4) $S^{2-} < Cl^- < Ca^{2+} < K^+$

Answer (3)

e

Sol. Given ions are isoelectronic more is nuclear charge per electron smaller is size

43. Match items of columsn I and II

	Column I (Mixture of compounds)	Column II (Separation Technique)	
(A)	H ₂ O / CH ₂ Cl ₂	(i)	Crystallization
(B)	OH OH NO2	(ii)	Differential solvent extraction
(C)	Kerosene / Naphthalene	(iii)	Column chromatography
(D)	C ₆ H ₁₂ O ₆ / NaCl	(iv)	Fractional Distillation

Correct match is

- (1) A-(ii), B-(iii), C-(iv), D-(i)
- (2) A-(ii), B-(iv), C-(i), D-(iii)
- (3) A-(i), B-(iii), C-(ii), D-(iv)
- (4) A-(iii), B-(iv), C-(ii), D-(i)

Answer (1)

Sol. Water and dichloromethane can be separated by differential extraction.

Which $C_6H_{12}O_6$ and NaCl can be separated by crystallization.

44. Choose the correct set of reagents for the following conversion.

trans (Ph – CH = CH – CH₃)
$$\rightarrow$$
 cis (Ph – CH = CH – CH₃)

- (1) Br₂, alc•KOH, NaNH₂, H₂ Lindlar Catalyst
- (2) Br₂, aq•KOH, NaNH₂, Na (Liq NH₃)
- (3) Br₂, alc•KOH, NaNH₂, Na (Liq NH₃)
- (4) Br₂, aq•KOH, NaNH₂, H₂ Lindlar Catalyst

Answer (1)

Sol.
$$Ph - CH = CH - CH_3 \longrightarrow Ph - CH = CH - CH_3$$

$$\begin{array}{c} \text{Ph} - \text{CH} = \text{CH} - \text{CH}_3 \xrightarrow{\text{Br}_2} \\ \text{Trans} & \\ \text{Ph} - \text{CH} - \text{CH} - \text{CH}_3 \xrightarrow{\text{alc.KOH/NaNH}_2} \end{array}$$

$$Ph - C \equiv C - CH_3 \xrightarrow{\text{Lindale's catalyst}} Ph$$

$$C = C \xrightarrow{\text{H}} H$$

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

45.
$$\frac{\text{NO}_2}{\text{C}_2\text{H}_5\text{OH}} \rightarrow [A] \xrightarrow{\text{(CH}_3\text{CO)}_2\text{O}} \text{Pyridine} \rightarrow [B]$$

Consider the above reaction and identify the product B.

(2)
$$CH_2NH_2$$

$$(3) \qquad \bigcirc \overset{O}{\underset{C}{\parallel}} \overset{O}{\underset{NH_2}{\parallel}}$$

(4)
$$NHCH_2$$
 C OH

Answer (1)

Sol.
$$NO_2$$

$$H_2/Pd$$

$$C_2H_5OH$$

$$(A)$$

$$NH_2$$

$$Postilion$$

$$(B)$$

$$m-phenyl ethanamide$$

46. The correct order of melting points of dichlorobenzenes is

Answer (1)

- **Sol.** Out of o, m, p-dichlorobenzene para isomer has maximum melting point due to symmetrical nature.
- 47. A protein 'X' with molecular weight of 70,000 u, on hydrolysis gives amino acids. One of these amino acid is

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{(1)} \quad \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{COOH} \\ \mathsf{I} \\ \mathsf{NH_2} \end{array}$$

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{(2)} \ \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{COOH} \\ \mathsf{I} \\ \mathsf{NH_2} \end{array}$$

(3)
$$NH_2-CH_2-CH-CH_2CH_2COOH$$
 | CH_3

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{I} \\ \mathsf{(4)} \ \mathsf{CH_3} - \mathsf{C} - \mathsf{CH_2} - \mathsf{CH_2}\mathsf{COOH} \\ \mathsf{I} \\ \mathsf{NH_2} \end{array}$$

Answer (1)

Sol. Protein upon hydrolysis gives α -amino acids. Only option (1) contains α -amino acid. Hence the correct answer is (1).

- (1) 4f³
- $(2) 4f^46s^2$
- (3) 4f⁴

(4) 4f²6s²

Answer (3)

Sol. Neodymium Nd = $4f^4$ 6s²

$$Nd^{2+} = 4f^4$$
.

- 49. Which of the following artificial sweeteners has the highest sweetness value in comparison to cane sugar?
 - (1) Sucralose
- (2) Aspartame
- (3) Saccharin
- (4) Alitame

Answer (4)

Sol. Highest sweetness value is of Alitame

Sucralose = 600

Aspartame = 100

Saccharin = 550

Alitame = 2000

- 50. The methods NOT involved in concentration of ore are
 - A. Liquation
- B. Leaching
- C. Electrolysis
- D. Hydraulic washing
- E. Froth floatation

JEE (Main)-2023 : Phase-1 (31-01-2023)-Morning

Choose the correct answer from the options given below

- (1) B, D and C only
- (2) B, D and E only
- (3) C, D and E only
- (4) A and C only

Answer (4)

Sol. (A) and (C) only

Liquation is used for purification of metal.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

51. On complete combustion, 0.492 g of an organic compound gave 0.792 g of CO₂. The % of carbon in the organic compound is (Nearest integer)

Answer (44)

Sol. Percentage of C =
$$\frac{W_{CO_2}}{W_{org.comp}} \times \frac{12}{44} \times 100$$

$$= \frac{0.792}{0.492} \times \frac{12}{44} \times 100$$

phosphorus 52. The oxidation state hypophosphoric acid is +

Answer (4)

Sol. Hypophosphoric acid H₄P₂O₆

Oxidation state is +4

53. For reaction : $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$

 $K_p = 2 \times 10^{12}$ at 27°C and 1 atm pressure. The K_c for the same reaction is \times 10¹³. (Nearest integer)

(Given R = $0.082 L atm K^{-1} mol^{-1}$)

Answer (1)

Sol.
$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$$

$$K_p = K_c (RT)^{\Delta n}$$

$$2 \times 10^{12} = K_c (0.082 \times 300)^{-1/2}$$

$$K_c = 2 \times 10^{12} \times (0.082 \times 300)^{\frac{1}{2}}$$

= 9.9×10^{12}
= 0.99×10^{13}
 $\approx 1 \times 10^{13}$

54. How many of the transformations given below would result in aromatic amines?

(1)
$$NH_2 + Br_2 + NaOH \longrightarrow$$

$$(2) \bigcup_{0}^{0} NK \longrightarrow^{CI}$$

$$(3) \qquad \begin{array}{c} \text{NO}_2 \\ \text{Pd/C} \end{array}$$

NH COCH₃

$$\frac{\text{dil } H_2SO_4}{\Delta}$$

Answer (3)

Sol. 1, 3, 4 will give Aniline.

Gabriel phthalimide synthesis cannot be used to prepare Aniline.

 NH_2

(1) $C_6H_5CONH_2 \xrightarrow{Br_2/NaOH} C_6H_5NH_2$

Hoffmann Bromamide synthesis

(3)
$$H_2$$
 H_2 H_2

55. The enthalpy change for the conversion of $\frac{1}{2}$ Cl₂(g)

to Cl^- (aq) is (-) _____ kJ mol⁻¹ (Nearest integer)

Given: $\Delta_{\text{dis}}H_{\text{Cl}_2(q)}^{\Theta} = 240 \text{ kJ mol}^{-1}$,

$$\Delta_{\text{eg}}H_{\text{Cl}(q)}^{\Theta} = -350 \text{ kJ mol}^{-1},$$

$$\Delta_{\mathrm{hyd}}\mathrm{H}_{\mathrm{Cl}_{(\mathrm{G})}}^{\ominus}=$$
 –380 kJ mol $^{-1}$

Answer (610)

JEE (Main)-2023: Phase-1 (31-01-2023)-Morning

Sol.
$$\frac{1}{2}Cl_2(g) \longrightarrow Cl_{(aq)}^- \qquad \Delta H = ?$$

$$\Delta H = \frac{1}{2} \Delta_{diss} H_{Cl_2}^{\circ} + \Delta_{eg} \Delta H_{Cl(g)}^{\circ} + \Delta_{hyd} H_{Cl(g)}^{\circ}$$

$$= \frac{1}{2} \times 240 + (-350) + (-380)$$

$$= -610 \text{ kJ mol}^{-}$$

56. The total pressure of a mixture of non-reacting gases X (0.6 g) and Y (0.45 g) in a vessel is 740 mm of Hg. The partial pressure of the gas X is ____ mm of Hg. (Nearest integer)

(Given: molar mass X = 20 and Y = 45 g mol⁻¹)

Answer (555)

Sol. $P_{Total} = 740 \text{ mm of Hg}$

 P_X = mole fraction of [X] P_{Total}

$$n_X = \frac{0.6}{20} = 0.03$$

$$n_Y = \frac{0.45}{45} = 0.01$$

Mole fraction of X =
$$\frac{0.03}{0.01 + 0.03} = \frac{3}{4}$$

Partial pressure of X =
$$\frac{3}{4} \times 740$$

57. The logarithm of equilibrium constant for the reaction $Pd^{2+} + 4CI^{-} \rightleftharpoons PdCI_{4}^{2-}$ is _____. (Nearest integer)

Given :
$$\frac{2.303RT}{F} = 0.06V$$

$$Pd_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Pd(s)$$
 $E^{\Theta} = 0.83V$

$$PdCl_4^{2-}(aq) + 2e^- \rightleftharpoons Pd(s) + 4Cl^-(aq)$$
 $E^{\Theta} = 0.65V$

Answer (6)

Sol.
$$Pd^{2+} + 4CI^{-} \rightleftharpoons [PdCI_4]^{2-}$$

$$E^{\circ} = (0.83) - (0.65) = 0.18 \text{ V}$$

$$0 = 0.18 - \frac{0.06}{2} \log k_{eq}$$

$$0.18 = 0.03 \log k_{eq}$$

$$\log k_{eq} = 6$$

58. A→B

The rate constants of the above reaction at 200 K and 300 K are 0.03 min⁻¹ and 0.05 min⁻¹ respectively. The activation energy for the reaction is ______ J (Nearest integer)

(Given:
$$ln 10 = 2.3$$

$$R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$log 5 = 0.70$$

$$log 3 = 0.48$$

$$log 2 = 0.30)$$

Answer (2520)

Sol.
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.3 \times 8.3} \left(\frac{1}{200} - \frac{1}{300} \right)$$

$$log\frac{0.05}{0.03} = \frac{E_a}{2.3 \times 8.3} \left(\frac{1}{600}\right)$$

$$(0.70 - 0.48) = \frac{E_a}{2.3 \times 8.3} \times \frac{1}{600}$$

$$\Rightarrow 0.22 = \frac{E_a}{2.3 \times 8.3} \times \frac{1}{600}$$

$$E_a = 2.3 \times 8.3 \times 600 \times 0.22$$

59. At 27°C, a solution containing 2.5 g of solute in 250.0 mL of solution exerts an osmotic pressure of 400 Pa. The molar mass of the solute is _____ g mol⁻¹. (Nearest integer)

(Given :
$$R = 0.083 L bar K^{-1} mol^{-1}$$
)

Answer (62250)

Sol.
$$400 = \frac{2.5}{\text{mw}} \times 4 \times (.083 \times 10^5) \times 300$$

$$mw = \frac{10 \times 0.083 \times 3}{4} \times 10^5$$

60. Zinc reacts with hydrochloric acid to give hydrogen and zinc chloride. The volume of hydrogen gas produced at STP from the reaction of 11.5 g of zinc with excess HCl is _____ L. (Nearest integer)

(Given : Molar mass of Zn is 65.4g mol⁻¹ and Molar volume of H_2 at STP = 22.7 L)

Answer (4)

Sol.
$$Zn + 2HCl \longrightarrow ZnCl_2 + H_2$$

$$n_{Zn} = \frac{11.5}{65.4} = 0.176$$

$$V_{\text{H}_2} = 0.176 \times 22.7 = 3.99 \text{ litre}$$