

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Phone : 011-47623456

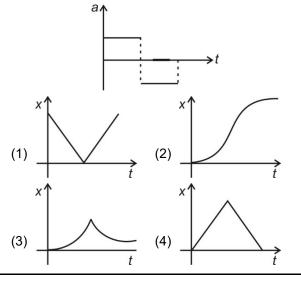
MM: 300

### JEE 350 - MOCK TEST for JEE 2022

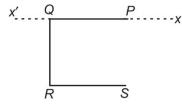
Time : 3 Hrs.

# Mock Test - Complete Syllabus

#### Instructions:


- 1. Duration of Test is 3 hrs.
- 2. The Test booklet consists of 90 questions. The maximum marks are 300.
- 3. There are **three** parts in the question paper A, B, C consisting of **Physics**, **Chemistry** and **Mathematics** having 30 questions in each part of equal weightage. Each part has two sections.
  - (i) **Section-I**: This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
  - (ii) Section-II: This section contains 10 questions. In Section II, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and there is no negative marking for wrong answer.

### [PART - A : PHYSICS]


#### **SECTION - I**

**Multiple Choice Questions:** This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

1. Figure shows the acceleration time graph of a particle moving in a straight line. Which of the following options best represents the corresponding position-time graph



- 2. A particle has initial velocity  $\vec{u} = (4\hat{i} 5\hat{j})$  m/s and it is moving with acceleration  $\vec{a} = \left(\frac{1}{4}\hat{i} + \frac{1}{5}\hat{j}\right)$ m/s<sup>2</sup>. Velocity of the particle at t = 2 second is
  - (1)  $(6\hat{i} 4\hat{j})$  m/s (2)  $(4.5\hat{i} 4.6\hat{j})$  m/s
  - (3)  $(4.5\hat{i} 4.1\hat{j})$  m/s (4)  $(6\hat{i} 4.6\hat{j})$  m/s
- 3. Three thin rods each of mass m and length L are joined to form  $\square$  as shown in the figure



Moment of inertia of the system about an axis xx' passing through rod PQ is



4. When an elastic material with young's modulus Y is subjected to a stretching stress 'S'. Elastic energy stored per unit volume of the material is

(1) 
$$\frac{S}{2Y}$$
 (2)  $\frac{S^2}{2Y}$   
(3)  $\frac{S^2Y}{2}$  (4)  $\frac{Y^2S}{2}$ 

5. A large tank filled with water to a height of *h* is to be emptied through a small hole at the bottom. The ratio of time taken for the level of water to fall

down from *h* to  $\frac{h}{2}$  and from  $\frac{h}{2}$  to zero is

(1) 
$$\sqrt{2} - 1$$
 (2)  $\frac{1}{\sqrt{2} - 1}$   
(3)  $\frac{\sqrt{2}}{\sqrt{2} - 1}$  (4)  $\frac{2\sqrt{2}}{1 - \sqrt{2}}$ 

- 6. A spherical body of emissivity e = 0.7 and surface area *A* is Placed inside a perfect black body maintained at temperature *T*, then energy radiated per second by black body will be
  - (1)  $E = 0.3 \text{ GAT}^4$  (2)  $E = 0.7 \text{ GAT}^4$ (3)  $E = 0.5 \text{ GAT}^4$  (4)  $E = \text{GAT}^4$
- 7. An ideal gas is allowed to expands from volume V to 2V according to the law  $VP^2$  = Constant. If initial temperature of the gas is '*T*' then its final temperature will be

(1) T (2)  $T\sqrt{2}$ 

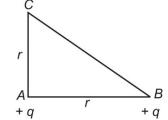
- (3)  $\frac{T}{\sqrt{2}}$  (4) 2T
- 8. The ratio of velocity of sound in oxygen to that in Argon at the same temperature is

| (1) $\sqrt{\frac{21}{20}}$ | (2) $\sqrt{\frac{20}{21}}$ |
|----------------------------|----------------------------|
| (3) $\sqrt{\frac{21}{25}}$ | (4) $\sqrt{\frac{25}{21}}$ |

9. A simple pendulum performs SHM about x = 0 with an amplitude *A* and time period *T*. The speed

of the pendulum at  $x = \frac{3A}{4}$  will be

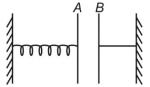
| (1) $\frac{A\pi\sqrt{7}}{2T}$ | (2) | $\frac{\sqrt{3}\pi A}{T}$ |
|-------------------------------|-----|---------------------------|
|-------------------------------|-----|---------------------------|


 $(3) \quad \frac{\pi A \sqrt{5}}{2T} \qquad \qquad (4) \quad \frac{\pi A \sqrt{7}}{4T}$ 

10. A circular beam of light having a diameter 4 cm falls on a plane glass slab at angle of incidence 60°. If refractive index of the material of slab is

$$\mu = \frac{3}{2}$$
, then diameter of the refracted beam is

(1) 
$$10\sqrt{\frac{2}{3}}$$
 cm (2) 2 cm  
(3)  $8\sqrt{\frac{2}{3}}$  cm (4)  $4\sqrt{\frac{3}{2}}$  cm

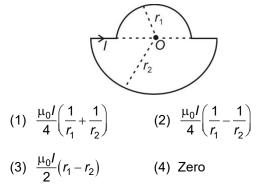

- 11. In young's double slit experiment, if the separation between the slits is halved and the distance between the slits and screen is doubled, then fringe width becomes
  - (1) Doubled (2) Quadrupled
  - (3) Halved (4) Remains same
- 12. Two charges each +q are placed at the vertices of a right angled triangle (isosceles triangle) as shown in the figure.



Charge that should be placed on vertex C, so that net electrostatic energy of the configuration is zero, is

(1) 
$$\frac{-q.2}{1+\sqrt{2}}$$
 (2)  $\frac{-q}{\sqrt{2}-1}$   
(3)  $\frac{-\sqrt{2}q}{\sqrt{2}-1}$  (4)  $\frac{-\sqrt{2}q}{\sqrt{2}+1}$ 

13. Plate *A* of a parallel plate air filled capacitor is connected to a spring having force constant *K* and Plate *B* is fixed. They rest on a smooth table as shown in the figure. (Area of each plate is *A*)

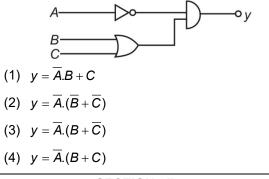



It a charge +q is given to plate *A* and -q is given to plate *B*. Extension of the spring in equilibrium situation

(1) 
$$\frac{q^2}{KA\varepsilon_0}$$
 (2)  $\frac{q^2}{2KA\varepsilon_0}$ 

(3) 
$$\frac{2q^2}{\kappa_0 A}$$
 (4) No extension

- 14. Soft iron is used in many parts of electrical machines because it exihit
  - (1) Low permeability and low hysteresis loss
  - (2) Low permeability and high hysteresis loss
  - (3) High permeability and high hysteresis loss
  - (4) High permeability and low hysteresis loss
- 15. The wire loop carries a current *I* as shown in the figure. The magnetic field at the centre 'O' will be




- 16. A charged particle is projected in to a region where there may have an electric filed  $\vec{E}$  and/or magnetic field  $\vec{B}$ . If the charged particle goes un-accelerated, then it is not possible that
  - (1)  $\vec{E} = 0, \vec{B} = 0$
  - (2)  $\vec{E} \neq 0, \vec{B} = 0$
  - (3)  $\vec{E} = 0, \vec{B} \neq 0$
  - (4)  $\vec{E} \neq 0, \vec{B} \neq 0$
- 17. The Maxwell

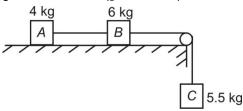
$$\oint \vec{B}.d\vec{l} = \mu_0 \left( I + \varepsilon_0 \frac{d\phi_E}{dt} \right)$$
 is a statement of

- (1) Faradey's law of EMI
- (2) Modified Ampere's law
- (3) Gauss' law of electrostatic
- (4) Gauss' law of magnetism
- 18. The ratio of the de-Broglie wavelength of an  $\alpha$ -particle and a proton of same kinetic energy is
  - (1) 1:2 (2) 1:1
  - (3)  $\sqrt{2}:1$  (4) 4:1
- 19. For the stability of any nucleus
  - (1) Binding energy per nucleon should be more
  - (2) Binding energy per nucleon should be less
  - (3) Number of protons inside the nucleus should be more
  - (4) Number of neutrons inside the nucleus should be more

20. The Boolean equation for the circuit given in figure is

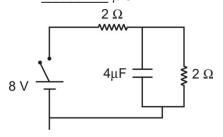


#### **SECTION - II**


**Numerical Value Type Questions:** This section contains 10 questions. In Section II, attempt any **five questions out of 10**. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

 In an experiment four quantities a, b, c and d are measured with percentage error 2%, 3% 1% and 0.5% respectively. A quantity Q is defined as Q

 $Q = \frac{a\sqrt{b}}{c^{3/2}d^4}$ . Maximum percentage error in the


calculation of Q will be \_\_\_\_\_ %

22. Three blocks *A*, *B* and *C* are placed on a rough horizontal surface. Friction coefficient between blocks and surface is 0.6. Acceleration of the block *C* in given situation is ( $g = 10 \text{ m/s}^2$ )

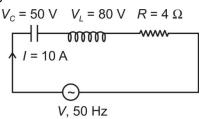


- 23. Two satellites are in the parking orbits around the earth. Mass of one is 10 times that of the other. The ratio of their periods of revolution is :
- 24. Specific heat *S* of container of mass 1 kg varies with temperature *T* according to the empirical relation S = A + BT. Where A = 100 cal kg<sup>-1</sup> K<sup>-1</sup> and  $B = 2 \times 10^{-2}$  cal kg<sup>-1</sup> K<sup>-2</sup>. If container was heated from 27°C to 227°C then heat required to do so is \_\_\_\_\_\_ cal
- A compound microscope has a magnifying power 30. Focal length of its eye piece is 5 cm. If the final image formed at least distance of distinct vision then magnification produced by the objective is

- 26. A beam of light is incident on a glass plate at an angle of incidence 60°. The reflected ray is completely polarized. Refractive index of the glass plate is
- 27. When the key is pressed at time t = 0, then charge on the capacitor after a very long time in given figure will be  $\mu C$



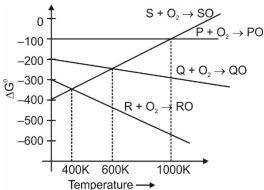
#### **SECTION - I**


**Multiple Choice Questions**: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

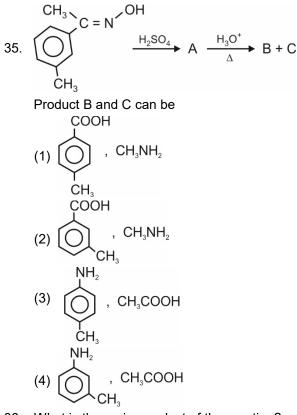
- 31. Cation X, Y and Z do not give precipitates with hydrochloric acid but form precipitate with hydrogen sulphide in dilute mineral acid medium. While sulphide of X, Y are insoluble in ammonium polysulphide, the sulphide of Z is soluble. Then out of the following X, Y and Z are respectively.
  - (1)  $Hg_2^{2+}, Cu^{2+}, As^{3+}$
  - (2)  $Hg^{2+}, Cu^{2+}, As^{+3}$
  - (3) Ag<sup>+</sup>, Cu<sup>2+</sup>, Hg<sup>2+</sup>
  - (4) Ag<sup>+</sup>, Cu<sup>2+</sup>, Pb<sup>2+</sup>
- 32. Iron(II) sulphate in acidic medium reduces permanganate to Mn<sup>+x</sup>. The solution becomes yellow because of the formation of A. The yellow colour disappears if potassium fluoride is added because they form colourless complex with A.

The correct statement about A in above reaction is

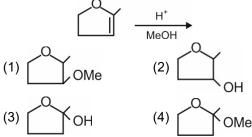
- (1) In this reaction,  $Mn^{+7}$  is converted to  $Mn^{+4}$
- (2) A is Fe<sup>3+</sup>
- (3) A is Mn<sup>2+</sup>
- (4) In this reaction  $Mn^{+7}$  convert to  $Mn^{+6}$


28. Find the power factor of the A.C. circuit as shown in the figure.




- 29. If 10% of a material decays in 5 days, then the amount of original material left after 20 days is approximately \_\_\_\_\_\_%.
- A beam of light converges towards a point O, 10 cm behind a concave mirror of focal length 20 cm. Magnification produced by the mirror is

## [PART – B : CHEMISTRY]


- 33. The reduction of metal oxide is easier if metal formed is in liquid state at the temperature of reduction because
  - (1)  $\Delta S$  of process is more negative that favour the reduction
  - (2)  $\Delta S$  of process is more positive so favour reduction
  - (3)  $\Delta H$  of process is more positive so favour reduction
  - (4)  $\Delta G$  of process is more positive so favour reduction
- 34. Consider the Ellingham diagram.

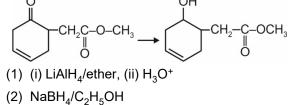


- At 800 K, oxide of Q can be reduced spontaneously by
- (1) Only R
- (2) Both S and P
- (3) Only S
- (4) Only P



36. What is the major product of the reaction?

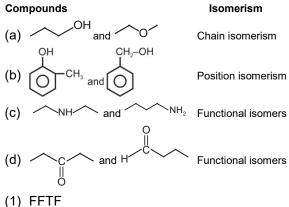



37. What is the correct order of K<sub>a</sub> value of following compound?

 $\begin{array}{ll} \text{2-chloroethanol}\,, & \text{isopropyl alcohol}\,, \\ & (II) & (II) \end{array}$ 

2,2,2-trichloroethanol

| > ||


38. The suitable reagent for the given conversion is

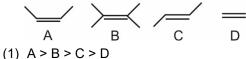


- (3) H<sub>2</sub>/Ni
- (4) Zn-Hg/HCl

- 39. 8 g of  $Na_2CO_3.xH_2O$  are present in 500 mL of solution. This solution is diluted by water such that volume of solution becomes 1 L. 100 mL of dilute solution is completely neutralised by 10 mL of 1 M HCI. The value of x is
  - (1) 1 (2) 2
  - (3) 3 (4) 4
- 40. Which of the following is correct combination?
  - Atomic NumberNameSymbol(1) 105UnnilpentiumUnp(2) 107UnunheptiumUuh(3) 109UnnilenniumUnn(4) 111UnniluniumUuu
- 41. The correct order of atomic radius is
  - (1) Mn < Fe < Co
  - (2) Sc < Ti < V
  - (3) Fe < Co < Zn
  - (4) Zn > Cu > Ni
- 42. Hybridisation of central atom of  $PCI_6^-$  and  $PO_4^{3-}$  are respectively
  - (1)  $sp^3d^2$ ,  $sp^3d$  (2)  $sp^3d^2$ ,  $sp^3$
  - (3)  $sp^3d$ ,  $sp^3$  (4)  $sp^3d^3$ ,  $sp^2$
- 43. Among the following, strength of H-bonding is maximum in
  - (1) F—H⋯O
  - (2) O—H⋯O
  - (3) N—H⋯O
  - (4) N—H⋯N
- 44. In which of the following process, magnetic nature of species does not change?
  - $(1) \quad O_2^+ \longrightarrow O_2^{+2}$
  - (2)  $CN^{-} \longrightarrow CN$
  - $(3) \quad \mathsf{F}_2 \longrightarrow \mathsf{F}_2^+$
  - $(4) \quad \mathsf{B}_2 \longrightarrow \mathsf{B}_2^+$
- 45. Select the correct statement.
  - (1) Photochemical smog occurs in cool humid climate
  - (2) Photochemical smog is called as oxidising smog
  - (3) It is mixture of smoke and  $SO_2$
  - (4) Ozone is not a component of photochemical smog

46. Few compounds and their relationship is described below. Select the correct combination of true (T) and false (F).




- (2) FTTT
- (3) TTFF
- (**0**) TITT
- (4) TFTT
- 47. Select incorrect order of stabilities of various intermediates.

(1) 
$$CH_3 - CH - CH_3 < CH_3 CH_2$$
  
 $CH_3 < CH_3 CH_2$   
(2)  $CH_3 + CH_3 < CD_3 + CH_3$ 

(3) 
$$CH_3O - CH - CH_3 > CH_3 - CH_3 - CH_3$$

(4) 
$$CN - CH_2^{\Theta} > NH_2 - CH_2^{\Theta}$$

48. The decreasing order of stability in the following compounds is



- (I) A B C D
- (2) D > C > B > A
- (3) B > C > A > D
- (4) B > A > D > C
- 49. Which of the following statement is true?
  - (1) All alcohols react with NaOH to give salt and water
  - (2) Alcohol reacts with Na metal and produce H<sub>2</sub>
  - (3) Phenol do not react with NaOH
  - (4) Phenol produces  $CO_2$  on reaction with NaHCO<sub>3</sub>

50.  $CH_3 - CH_2Br \xrightarrow{\text{LiAlH}_4} Q + R$ 

If R contains aluminium metal, then Q can also be formed by the

- (1) Reaction of  $CH_3MgBr$  with  $C_2H_5OH$
- (2) Reaction of  $C_2H_5MgBr$  with  $C_2H_5OH$
- (3) Reaction of CH<sub>3</sub>CH<sub>2</sub>Br with aq. KOH
- (4) Dehydration of ethanol

#### **SECTION - II**

**Numerical Value Type Questions:** This section contains 10 questions. In Section II, attempt any **five questions out of 10**. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

- 51. The rms speed of NO gas at 27°C is half of the rms speed of gas X at 287°C. The molar mass of gas X (in g/mol) is \_\_\_\_.
- 52. If standard heat of formation of  $CO_2$  is - 400 kJ/mol. The amount of  $C_{(graphite)}$  required, if 10 kJ heat is released during the combustion, is \_\_\_\_\_ g.
- 53. A 2 L vessel contains 4 g of Helium and 4 g of H<sub>2</sub> gas at 27°C. After sometime, 50% of the gas having higher average speed is removed. The percentage reduction in total pressure if temperature remains constant is equal to
- 54. Consider the reaction

$$BrO_3^- + Br^- + H^+ \rightarrow Br_2 + H_2O$$

100 ml of 0.1 M  $BrO_3^-$  solution react with 250 ml of 0.15 M Br<sup>-</sup> in acidic medium according to above reaction. The mass of Br<sub>2</sub> formed is \_\_\_\_\_g. (molar mass of Br<sub>2</sub> = 160 g/mol)

55. Maximum number of electrons having n = 3 and  $m_s = -\frac{1}{2}$  will be \_\_\_\_\_.

- 57. The value of  $C_V$  for  $N_2$  is \_\_\_\_\_ R.
- 58. \_\_\_\_\_ type/s of functional group is/are present in fumaric acid.
- 59. \_\_\_\_\_ th/st/rd element of 3d series has least value of radius.
- 60. Number of stereo isomers of possible for C<sub>2</sub>FClBrl is/are \_\_\_\_\_.

### [PART – C : MATHEMATICS]

#### **SECTION - I** Multiple Choice Questions : This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct. 61. The greatest term in the expansion of $(3+5x)^{15}$ when $x=\frac{9}{25}$ , is (1) $T_6$ only (2) $T_7$ only (3) Both $T_6$ and $T_7$ (4) Both $T_5$ and $T_6$ 62. Let $\omega$ be the 7<sup>th</sup> root of unity. Then $\log_3 \left| 1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 - \frac{8}{\omega} \right|$ is equal to (1) 0 (2) 1 (3) 2 (4) 3 63. If $\alpha$ , $\beta$ , $\gamma$ are the roots of $x^3 + 3x^2 - 1 = 0$ , then $\frac{1}{\alpha(\beta+\gamma)} + \frac{1}{\beta(\gamma+\alpha)} + \frac{1}{\gamma(\alpha+\beta)}$ is equal to (1) 0(2) - 3(3) 3 (4) -1 64. If |z-4| < |z-2|, its solution is given by (1) Re(z) > 0(2) Re(z) < 0(3) Re(z) > 3(4) Re(z) > 265. Let $A = \left\{ x \in R : \frac{x-1}{x} > 1 \right\}$ and $B = \left\{ x \in R: \ln(x^2 - 4x + 4) \ge 0 \right\},\$ then $A \cap B$ equals (1) (−∞, 0) (2) (0,∞) (3) (-3, 0)(4) (1,∞) 66. If it is possible to draw a line which belongs to all the given family of lines $y - 2x + 1 + \lambda_1(2y - x - 1) = 0$ , $(3y - x - 6) + \lambda_2 (y - 3x + 6) = 0$ , $ax + y - 2 + \lambda_3 (6x + ay - a) = 0$ , then (1) a = 3(2) a = 2(3) a = -2(4) a = 4

- 67. The co-ordinates of the point on the parabola  $y = x^2 + 7x + 2$  which is nearest to the straight line y = 3x 3 are
  - $\begin{array}{cccc} (1) & (-2, -8) \\ (2) & (2, 20) \\ (4) & (-1, -4) \\ \end{array}$
  - (3) (2, 20) (4) (-1, -4)

| 68. | $\lim_{x \to 0} \frac{e^{x^2} - \cos x}{\sin^2 x}$ is equal | Il to:                       |  |
|-----|-------------------------------------------------------------|------------------------------|--|
|     | (1) 2                                                       | (2) 3                        |  |
|     | (3) $\frac{3}{2}$                                           | (4) $\frac{5}{4}$            |  |
| 69. |                                                             | values of $x$ satisfying the |  |
|     | equation $2^{(x-1)(x^2+5x-50)}$                             | = 1 is                       |  |
|     | (1) 16                                                      | (2) 14                       |  |
|     | (3) -4                                                      | (4) –5                       |  |
| 70. | If $g$ is the inverse                                       | of a function f and          |  |
|     | $f'(x) = \frac{1}{1+x^5}$ , then $g'(x)$ is equal to        |                              |  |
|     | (1) $\frac{1}{1+\{g(x)\}^5}$                                | (2) $1 + \{g(x)\}^5$         |  |
|     | (3) $1+x^5$                                                 | (4) $5x^4$                   |  |
| 71. | . Shortest distance between the lines                       |                              |  |
|     | $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$             |                              |  |
|     | and $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-3}{1}$         | - 4<br>1 is equal to         |  |
|     | (1) $\sqrt{14}$                                             | (2) √7                       |  |

(1) 
$$\sqrt{14}$$
 (2)  $\sqrt{7}$   
(3)  $\sqrt{2}$  (4)  $\sqrt{3}$ 

- 72. Let *L* denotes the set of straight lines in a plane. Let a relation *R* be defined by  $\alpha R \beta \Leftrightarrow \alpha \perp \beta; \alpha, \beta \in L$ . Then *R* is
  - (1) Reflexive (2) Symmetric
  - (3) Transitive (4) Equivalence
- 73. Two vertices of an equilateral triangle are (-1, 0) and (1, 0) and the third vertex lies above the *x*-axis. the equation of circumcircle is

(1) 
$$x^{2} + y^{2} + \frac{2y}{\sqrt{3}} - 2 = 0$$
  
(2)  $x^{2} + y^{2} - \frac{2y}{\sqrt{3}} - 1 = 0$   
(3)  $x^{2} + y^{2} - \frac{y}{\sqrt{3}} = 0$   
(4)  $x^{2} + y^{2} - \frac{2y}{\sqrt{3}} - 2 = 0$ 

- 74. The number of values of x in the interval [0,  $3\pi$ ] satisfying the equation  $2\sin^2 x + 5\sin x 3 = 0$  is
  - (1) 4
     (2) 6

     (3) 1
     (4) 2

 $\sqrt{3}$ 

- 75. If  $2\int_{0}^{1} \tan^{-1} x \, dx = \int_{0}^{1} \cot^{-1}(1 x + x^{2}) dx$ , then  $\int_{0}^{1} \tan^{-1}(1 - x + x^{2}) dx$  is equal to: (1)  $\frac{\pi}{2} + \log 2$  (2)  $\log 2$ (3)  $\frac{\pi}{2} - \log 4$  (4)  $\log 4$
- 76. If the eccentricity of the hyperbola  $x^2 y^2 \sec^2 \alpha = 15$ is  $\sqrt{7}$  times the eccentricity of the ellipse  $x^2 \sec^2 \alpha + y^2 = 50$ , then the value of  $\alpha$  is
  - (1)  $\frac{\pi}{3}$  (2)  $\frac{\pi}{2}$ (3)  $\frac{\pi}{4}$  (4)  $\frac{\pi}{6}$
- 77. Let  $f: R \to R$  be a function defined by  $f(x) = \min\{x + 1, |x| + 1\}$ , then which of the following is true?
  - (1) f(x) is differentiable everywhere
  - (2) f(x) is not differentiable at x = 0
  - (3)  $f(x) \ge 1$  for all  $x \in R$
  - (4) f(x) is not differentiable at x = 1

78. Let 
$$A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
 where  $x, y, z \in N$ 

If | adj (adj (adj (adjA))) | = 4<sup>8</sup>.5<sup>16</sup>, then number of such matrix is

| (1) | 60 | (2) | 28 |
|-----|----|-----|----|
| (3) | 36 | (4) | 45 |

- 79. If  $1^2 + 2^2 + 3^2 + \dots + 2014^2 = x$  and  $1.2014 + 2.2013 + \dots + 2014.1 = y$ , then x is equal to (1)  $2015.1007^2 - y$  (2)  $1007 \times 2015^2 - y$ 
  - (3)  $1007 \times 2015^2 + y$  (4)  $2015.1007^2 + y$
- 80. The area of the region bounded by the curves
  - y = |x 1| and y = 3 |x| is

| (1) 6 sq. units | (2) 2 sq. units |
|-----------------|-----------------|
| (3) 3 sq. units | (4) 4 sq. units |

#### **SECTION - II**

**Numerical Value Type Questions:** This section contains 10 questions. In Section II, attempt any **five questions out of 10**. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g.

06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer

- 81. The distance of the point (3, 8, 2) from the line  $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-2}{3}$  measured parallel to the plane 3x + 2y - 2z + 15 = 0
- 82. If  $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$  are unit vectors satisfying  $|\vec{\alpha} \vec{\beta}|^2 + |\vec{\beta} \vec{\gamma}|^2 + |\vec{\gamma} \vec{\alpha}|^2 = 9$ , then  $|3\vec{\alpha} + 8\vec{\beta} + 8\vec{\gamma}|$  equals
- 83. If  $y_1$ ,  $y_2$ ,  $y_3$ ..... $y_{18}$  are the observations such that  $\sum_{j=1}^{18} (y_j - 8) = 9 \text{ and } \sum_{j=1}^{18} (y_j - 8)^2 = 45$ , then the
  - standard deviation of these observations is
- 84. The graph of y = f(x), where  $f(x) \ge 0$ , meets *x*-axis in two points (0, 0) and (2, 0) and encloses an area of  $\frac{3}{4}$  square units with the axes. Then the value of  $\int_{0}^{2} xf'(x) dx$ , equal to
- 85.  $\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$ , then values of x is
- 86. The number of real values of  $\lambda$  for which the system of linear equations

$$2x + 4y - \lambda z = 0$$
$$4x + \lambda y + 2z = 0$$

$$\lambda x + 2y + 2z = 0$$

has infinitely many solutions is \_\_\_\_\_.

87. Let 
$$g(x) = f^{-1}(x)$$
 where,  
 $f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} - 4e^{\frac{(1-x)}{2}}$  then  $g'\left(\frac{-7}{6}\right) =$ 

- 88. Let y = f(x) satisfies the differential equation xy(1+y)dx = dy. If f(0) = 1 and  $f(2) = \frac{e^2}{\lambda - e^2}$ , then  $\lambda =$ .
- 89. The number of solution of  $\tan x + \sec x = 2\cos x$ in [0,  $2\pi$ ) is \_\_\_\_\_.
- 90. The minimum value of the sum of real numbers  $a^{-5}$ ,  $a^{-4}$ ,  $3a^{-3}$ , 1,  $a^8$  and  $a^{10}$  with  $a^{70}$  is