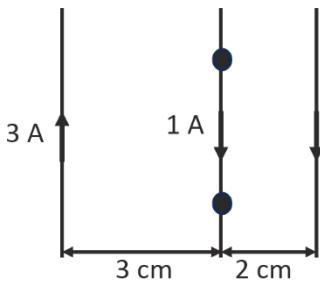


PHYSICS


SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. There are three long parallel wires in a plane as shown.

Find force on 15 cm of length of middle wire.

- (1) $5 \mu\text{N}$
- (2) $7 \mu\text{N}$
- (3) $6 \mu\text{N}$
- (4) $1 \mu\text{N}$

Answer (3)

$$\text{Sol. } B = B_1 + B_2 = \frac{\mu_0(3)}{2(3 \times 10^{-2})\pi} + \frac{\mu_0(2)}{2(2 \times 10^{-2})\pi} = \frac{\mu_0 \times 10^2}{\pi}$$

$$F = 15 \times 10^{-2} \times 1 \times 10^{-7} \times 10^2 \times 2 = 6 \times 10^{-6}$$

2. Equation of an EMW in a medium is given by $E = 2 \sin(2 \times 10^{15} t - 10^7 x)$. Find refractive index of the medium.

- (1) $\frac{3}{2}$
- (2) 2
- (3) $\frac{5}{3}$
- (4) $\frac{4}{3}$

Answer (1)

$$\text{Sol. } v = \frac{2 \times 10^{15}}{10^7} = 2 \times 10^8$$

$$\mu = \frac{c}{v} = 1.5$$

3. For a circular coil of radius R , magnetic field at center is $B_0 = 16 \mu\text{T}$. What will be the magnetic field on axis at a distance $x = \sqrt{3}R$ from center

- (1) $\frac{1}{4} \mu\text{T}$
- (2) $\frac{1}{2} \mu\text{T}$
- (3) $4 \mu\text{T}$
- (4) $2 \mu\text{T}$

Answer (4)

$$\text{Sol. } B_{(x)} = \frac{\mu_0}{4\pi} \cdot \frac{I 2\pi R^2}{(x^2 + R^2)^{3/2}}$$

$$\Rightarrow (B_{(x)}) = \frac{\mu_0}{2} \frac{IR^2}{8R^3} = \frac{\mu_0 I}{16R}$$

$$\text{Given } B_0 = \frac{\mu_0 I}{2R} = 16 \mu\text{T}$$

$$\text{So } B = \frac{1}{8} \cdot 16 \mu\text{T} = 2 \mu\text{T}$$

Our Problem *Solvers* shine bright in **JEE 2025**

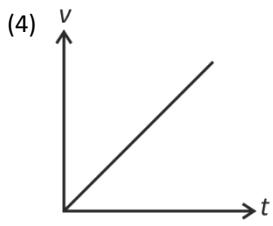
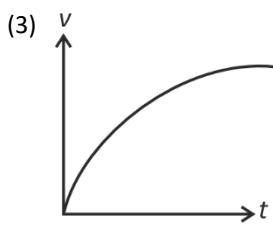
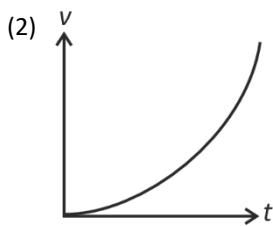
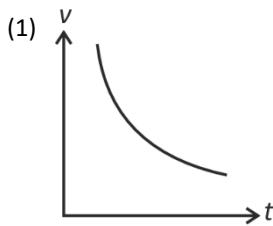
JEE (Advanced)

ADVAY
MAYANK
AIR 36

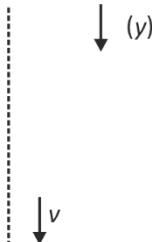
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall





KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall



4. An object is being dropped from height h above the ground. Apart from force of gravity additional drag force, $F = -kv$ acts on the object. Find the graph of v v/s t .

Answer (3)

Sol.

$$m \frac{dv}{dt} = (mg - kv)$$

$$\Rightarrow \frac{dv}{dt} = \left(g - \frac{kv}{m} \right)$$

$$\int_0^v \frac{dv}{g - \frac{kv}{m}} = \int_0^t dt$$

$$\Rightarrow -\frac{m}{k} \ln \left(g - \frac{kv}{m} \right) \Big|_0^v = t \Big|_0^t$$

$$\Rightarrow \ln \left(\frac{g - \frac{kv}{m}}{g} \right) = -\frac{tk}{m}$$

$$\Rightarrow \left(g - \frac{kv}{m} \right) = g e^{-\frac{kt}{m}}$$

$$\Rightarrow g \left(1 - e^{-\frac{kt}{m}} \right) = \frac{kv}{m}$$

$$\Rightarrow v = \frac{mg}{k} \left(1 - e^{-\frac{kt}{m}} \right)$$

5. Electric current in a circuit is given by $i = i_0 \left(\frac{t}{T} \right)$. Find rms current for the period $t = 0$ to $t = T$.

(1) $\frac{i_0}{\sqrt{5}}$

(2) $\frac{i_0}{\sqrt{2}}$

(3) $\frac{i_0}{2}$

(4) $\frac{i_0}{\sqrt{3}}$

Answer (4)

$$\text{Sol. } I_{\text{rms}}^2 = \frac{\int_0^T i_0^2 t^2 dt}{T}$$

$$= \frac{i_0^2 \cdot \frac{T}{3}}{T} = \frac{i_0^2}{3}$$

$$I_{\text{rms}} = \frac{i_0}{\sqrt{3}}$$

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

and many more...

6. Position of a particle is given by $x = A \sin(\omega t)$ potential energy is minimum at $t = \frac{T}{2\beta}$ where T is time period.

Find maximum value of β .

(1) $\frac{1}{2}$

(2) 1

(3) $\frac{1}{3}$

(4) $\frac{1}{6}$

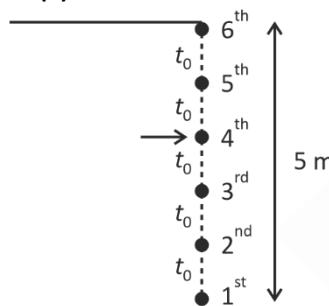
Answer (2)

Sol. At $t = \frac{T}{2}, T, \frac{3T}{2}, 2T, \dots$

Potential energy is minimum.

7. A tap is at a height of 5 m from ground. Water drops are falling from it at regular interval. When 1st drop hits the ground 6th droplet is just about to fall. Find the height of 4th droplet from ground when 1st droplet hits the ground.

(1) 4.2 m


(2) 3.2 m

(3) 4 m

(4) 3 m

Answer (1)

Sol.

$$\Rightarrow \frac{1}{2}g(25t_0^2) = 5$$

$$\Rightarrow gt_0^2 = \frac{2}{5}$$

Also $t_1 = 5 t_0$

$$S_4 = \frac{1}{2} \times g \cdot 4 t_0^2 = 2gt_0^2$$

$$S_4 = 2 \times \frac{2}{5} = \frac{4}{5} \text{ m}$$

$$\text{So, } S_1 - S_4 = 5 - \frac{4}{5} = \frac{21}{5} = 4.2 \text{ m}$$

8. If 10 kg of ice at -10°C is mixed with 100 kg of water at 25°C , then resultant temperature in equilibrium for mixture shall be

$$\left(S_i = \frac{1}{2} \text{ cal/gm} - \text{ }^\circ\text{C}, S_w = 1 \text{ cal/gm} - \text{ }^\circ\text{C}, L_f = 80 \text{ cal/gm} \right)$$

(1) 0°C

(2) 15°C

(3) 12.5°

(4) 5°C

Answer (2)

Sol. $10 \times 10 \times 500 + 10 \times 80 \times 1000$

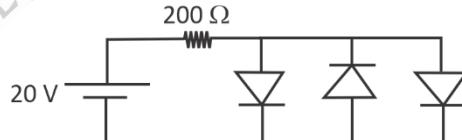
= 10 kg of water of 0°C

$$10^4 \{5 + 80\} = 85 \times 10^4 \text{ cal}$$

$$100 \times 1000 \times 1 \times 25 = 25 \times 10^5 \text{ cal}$$

Heat budget

$$\text{Reserved heat} = 25 \times 10^5 - 85 \times 10^4$$


$$= 10^4(250 - 85)$$

$$= 165 \times 10^4 \text{ Cal}$$

Mass 110 kg of water at 0°C .

$$\Delta T = \frac{165 \times 10^4}{110 \times 10^3} = \frac{165 \phi}{11 \phi} = 15^\circ$$

9. The threshold voltage for the diodes is 0.7 volt. Then current through diodes (from left to right) in given circuit is

(1) Zero, Zero, Zero

(2) 32.23 mA, 32.23 mA, 32.23 mA

(3) 48.25 mA, zero, 48.25 mA

(4) 50 mA, Zero, 50 mA

Answer (3)

Sol. $i = \frac{20 - 0.7}{200} = \frac{19.3}{200} = 96.5 \text{ mA}$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

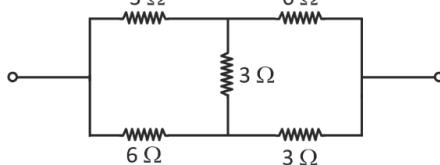
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

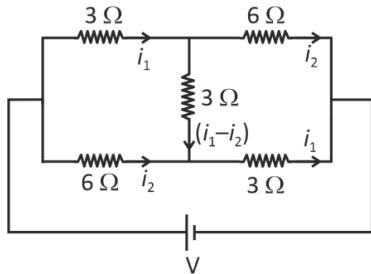
and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall


KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

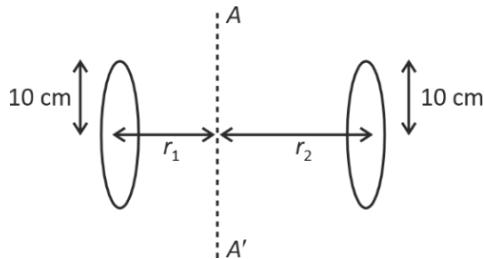

10. Find equivalent resistance of the given circuit.

(1) 6.4Ω (2) 4.2Ω
 (3) 7Ω (4) 5Ω

Answer (2)

Sol.

$$-3i_1 - 3(i_1 - i_2) + 6i_2 = 0 \quad \dots(1)$$


$$-3i_1 - 6i_2 + V = 0$$

$$i_1 = \frac{V}{7} \quad i_2 = \frac{2V}{21}$$

$$I = i_1 + i_2 = \frac{5V}{21}$$

$$R_{eq} = \frac{V}{I} = \frac{21}{5} = 4.2 \Omega$$

11. For the given situation shown in figure two disks each of mass $m = 600$ grams are rotating about a fixed axis AA' . Radius of each disk is $r_0 = 10$ cm and they are at distance $r_1 = 10$ cm and $r_2 = 20$ cm from the axis AA' . Torque acting about the axis is 45×10^5 dyne-cm. Find angular acceleration in rad/sec^2 .

(1) $\frac{170}{11} \text{ rad/sec}^2$ (2) $\frac{140}{9} \text{ rad/sec}^2$
 (3) $\frac{150}{11} \text{ rad/sec}^2$ (4) $\frac{160}{9} \text{ rad/sec}^2$

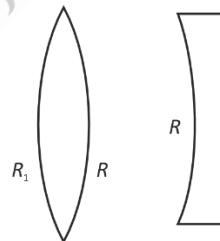
Answer (3)

$$\text{Sol. } I = \frac{mr_0^2}{4} + mr_2^2 + \frac{mr_0^2}{4} + mr_1^2$$

$$I = \frac{mr_0^2}{2} + m(r_1^2 + r_2^2)$$

$$I = m \left[\frac{1}{2 \times 100} + \frac{1}{100} + \frac{4}{100} \right] = \frac{6}{10} \left[\frac{11}{2} \right] \times \frac{1}{100}$$

$$\text{Also } \tau = 45 \times 10^5 \text{ dyne-cm} = 45 \times 10^{-2} \text{ N.m}$$


$$\text{So, } \alpha = \frac{45 \times 100 \times 2 \times 10}{100 \times 6 \times 11} = \frac{150}{11} \text{ rad/s}^2$$

12. A bi-convex lens of refractive index 1.5 and planoconcave lens of refractive index 1.7 have same power. If 2nd radius of curvature of convex lens is equal to radius of curvature of planoconcave lens. Find ratio of 1st radius of curvature to 2nd radius of curvature of bi-convex lens.

(1) $\frac{3}{2}$ (2) $\frac{5}{2}$
 (3) 4 (4) $\frac{3}{4}$

Answer (2)

Sol.

$$(1.5 - 1) \left(\frac{1}{R_1} + \frac{1}{R} \right) = \left((1.7 - 1) \left(-\frac{1}{R} - \frac{1}{\infty} \right) \right)$$

$$\frac{1}{2R_1} + \frac{1}{2R} = \frac{7}{10R}$$

Our Problem Solvers shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

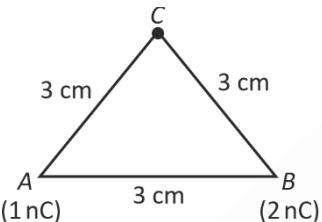
KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

$$\frac{1}{2R_1} = \frac{2}{10R}$$

$$\frac{R_1}{R} = \frac{5}{2}$$

13. Find the ratio of de-Broglie wavelength associated with deuteron with kinetic energy of K and α -particle with kinetic energy of $2K$.

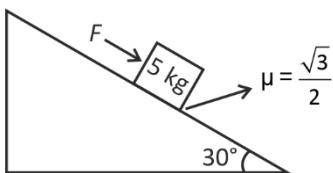

(1) $2:1$ (2) $2\sqrt{2}:1$
 (3) $1:\sqrt{2}$ (4) $\sqrt{2}:1$

Answer (1)

$$\text{Sol. } \lambda \propto \frac{1}{P} \propto \frac{1}{\sqrt{mK}}$$

$$\frac{\lambda_1}{\lambda_2} = \frac{\sqrt{4 \times 2K}}{\sqrt{2 \times K}} = 2$$

14. Find the work done by external agent in moving a 3nC charge from a large separation to point C .


(1) $8.1 \mu\text{J}$ (2) $12 \mu\text{J}$
 (3) $2.7 \mu\text{J}$ (4) $9 \mu\text{J}$

Answer (3)

$$\text{Sol. } w = \frac{9 \times 10^9 \times 1 \times 10^{-9} \times 3 \times 10^{-9}}{3 \times 10^{-2}} + \frac{9 \times 10^9 \times 2 \times 10^{-9} \times 3 \times 10^{-9}}{3 \times 10^{-2}}$$

$$w = 27 \times 10^{-7} \text{ J} = 2.7 \mu\text{J}$$

15. A block of mass 5 kg is placed on wedge of inclination 30° . Find force applied to move the block downwards with constant speed.

(1) $(\sqrt{3}-1)\frac{25}{2}$ (2) 12.5 N
 (3) Zero (4) 25 N

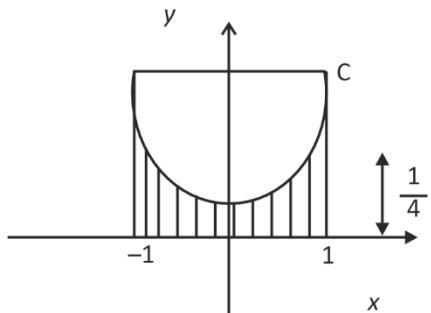
Answer (2)

$$\text{Sol. } F = \mu mg \cos 30^\circ - mg \sin 30^\circ$$

$$= \frac{\sqrt{3}}{2} mg \cdot \frac{\sqrt{3}}{2} - \frac{mg}{2}$$

$$= \frac{mg}{4}$$

$$F = 12.5 \text{ N}$$


16. Process ABC represents a parabolic section given by $(V-2)^2 = 4(P-1)$ in given cyclic process then work done by gas in process is

(1) $-\frac{1}{3} \text{ units}$ (2) $-\frac{1}{6} \text{ units}$
 (3) $-\frac{1}{2} \text{ units}$ (4) $-\frac{2}{3} \text{ units}$

Answer (1)

$$\text{Sol. } x^2 = 4y$$

$$\text{Area} = 2 \int_0^1 \frac{x^2}{4} dx = 2 \times \frac{1}{12} \times 1 = \frac{1}{6}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)
ADVAY MAYANK
AIR 36

RUJUL GARG
AIR 41

ARUSH ANAND
AIR 64

SHREYAS LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

Required area = rectangle = Shaded area

$$= \frac{1}{4} \times 2 - \frac{1}{6}$$

$$= \frac{1}{3} \text{ J}$$

17. **Statement-I:** When a planar wavefront passes through a prism then its wavefront doesn't change, but when planar wavefront passes through a smaller slit wavefront becomes cylindrical.

Statement-II: If distance between slits is decreased and screen distance is increased then fringe width increases.

- (1) S-I & S-II are both correct
- (2) S-I & S-II are both incorrect
- (3) S-I is correct & S-II is incorrect
- (4) S-I is incorrect & S-II is correct

Answer (1)

Sol. $\beta = \frac{\lambda D}{d}$

18. In a vernier callipers when nothing is placed between the jaws zero of vernier scale is ahead of zero of main scale and 4th division of vernier scale consider with one of the main scale. Now when a thin cylindrical wire is kept in the gaps then main scale reading is 15 and 5th vernier division matches with one of the main scale marking. Find the diameter of wire.

(Main scale marking = 1 mm & LC = 0.1 mm)

- (1) 15.9 mm
- (2) 14.9 mm
- (3) 15.8 mm
- (4) 15.1 mm

Answer (4)

Sol. Zero error = (+0.4 mm)

Reading = (15 + 0.5) mm

So diameter = 15 + 0.5 - 0.4 = 15.1 mm

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Two identical cells with same emf Σ and internal resistance r respectively are given. When cells are connected in series and when they are in parallel in both cases they drive equal current 'i' in external resistance of 6Ω . Find the value of internal resistance r .

Answer (6)

Sol. $\frac{2\Sigma}{6+2r} = i$

And $\frac{\Sigma}{\frac{r}{2}+6} = i$

So, $6 + 2r = r + 12 \Rightarrow r = 6 \Omega$

22. In a potentiometer, when a battery is connected with ext. resistance $R_1 = 4 \Omega$, the balancing length is found to be 120 cm. Now when R_1 is removed and another ext. resistance $R_2 = 12 \Omega$ is connected then the balancing length is found to be 180 cm. Find internal resistance (in Ω) of the battery.

Answer (4)

Sol. $\left(\frac{V_0}{I_0}\right) \times 120 = \left(\frac{E}{r+4}\right) 4 \quad \dots(1)$

And $\frac{V_0}{I_0} \times 180 = \left(\frac{E}{r+12}\right) 12 \quad \dots(2)$

So, $\frac{12}{18} = \frac{4(r+12)}{(r+4) \times 12} \Rightarrow \frac{2}{3} = \frac{(r+12)}{(r+4)3}$

$\Rightarrow 2r + 8 = r + 12$

$\Rightarrow r = 4 \Omega$

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

