
PHYSICS

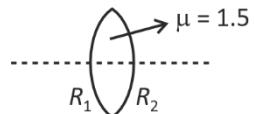
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. For the circuit given below, identify the logic gate.

(1) AND
 (2) OR
 (3) NAND
 (4) NOR


Answer (1)

Sol. Truth table

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

Clearly AND Gate.

2. Object is placed at distance 30 cm from lens given below, then distance of image from lens is ($R_1 = 10$ cm, $R_2 = 20$ cm)

(1) 36 cm
 (2) 24 cm
 (3) 20 cm
 (4) 30 cm

Answer (2)

$$\text{Sol. } \frac{1}{f} = \frac{1}{2} \left(\frac{1}{10} + \frac{1}{20} \right) = \frac{3}{40}$$

$$\frac{1}{v} - \frac{1}{-30} = \frac{3}{40}$$

$$\Rightarrow \frac{1}{v} = \frac{5}{120}$$

$$v = 24 \text{ cm}$$

3. The position vector is given as $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and if its signs reversed then which of the following physical quantity remains unaffected?

(1) Acceleration
 (2) Velocity
 (3) Displacement
 (4) Torque

Answer (4)

$$\text{Sol. } \vec{r} \times \vec{F} \equiv -\vec{r} \times -\vec{F} \equiv \vec{r}$$

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

© Akash Education

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

© Akash Education

12. Given that $v = \sqrt{\frac{Y}{P}}$. Find the maximum % error in v .

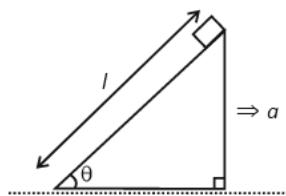
Given that $\frac{\Delta Y}{Y} \times 100 = 1\%$ and $\frac{\Delta P}{P} \times 100 = 0.5\%$

(1) $\frac{3}{2}\%$

(2) $\frac{3}{4}\%$

(3) 1%

(4) $\frac{1}{2}\%$


Answer (2)

Sol. $\frac{\Delta v}{v} = \frac{1}{2} \frac{\Delta Y}{Y} + \frac{1}{2} \frac{\Delta P}{P}$

So $\left(\frac{\Delta v}{v} \times 100 \right) = \frac{1}{2} \left(\frac{\Delta Y}{Y} \right) \times 100 + \frac{1}{2} \left(\frac{\Delta P}{P} \times 100 \right)$

$\Rightarrow \left(\frac{\Delta v}{v} \times 100 \right) = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}\%$

13. Find the time taken by block to reach the ground when released from a top of a wedge of inclination θ and length l , maintained at a constant acceleration ' a ' to the right as shown. (all contacts case smooth and block doesn't loose contact with wedge).

(1) $t = \sqrt{\frac{l}{g \cos^2 \theta + a \sin \theta}}$

(2) $t = \sqrt{\frac{l}{g \sin \theta + a \cos \theta}}$

(3) $t = \sqrt{\frac{2l}{g \sin \theta + a \cos \theta}}$

(4) $t = \sqrt{\frac{l}{2g \cos \theta + a \sin \theta}}$

Answer (3)

Sol. Applying pseudo force on block and resolving forces along incline we get $A = g \sin \theta + a \cos \theta$.

$$\Rightarrow \frac{1}{2} At^2 = l$$

$$\Rightarrow t = \sqrt{\frac{2l}{g \sin \theta + a \cos \theta}}$$

14.

15.

16.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.

22.

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

