A
CODE

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Time : 3 hrs
MOCK TEST - I
MM : 264
for JEE (Advanced) - 2022
Paper - 1
ANSWERS

PHYSICS

1. (6)
2. (4)
3. (8)
4. (8)
5. (0)
6. (3)
7. (8)
8. (8)
9. (A, C)
10. (A, C)
11. (B,C)
12. (A, B)
13. (A, B, D)
14. (A, B, C, D)
15. (A, C)
16. (A, C)
17. (A, B, D)
18. (A, C, D)
19. $A \rightarrow(P, S)$
$B \rightarrow(S)$
$C \rightarrow(R, S)$
$\mathrm{D} \rightarrow(\mathrm{P}, \mathrm{T})$
20. $A \rightarrow(Q, R, S)$
$B \rightarrow(P, S)$
$C \rightarrow(P)$
$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R})$

CHEMISTRY
21. (5)
22. (2)
23. (8)
24. (6)
25. (2)
26. (7)
27. (6)
28. (4)
29. (A, B, D)
30. (C, D)
31. (A, B, C, D)
32. (A, C)
33. (A, B, C, D)
34. (A, B, D)
35. (A, B, C, D)
36. (A, B, C)
37. (A, B, D)
38. (A)
39. $A \rightarrow(P, S)$
$B \rightarrow(Q, R, T)$
$C \rightarrow(P, S)$
$\mathrm{D} \rightarrow(\mathrm{Q}, \mathrm{R}, \mathrm{T})$
40. $A \rightarrow(T)$
$B \rightarrow(P, S)$
$C \rightarrow(R, S)$
$\mathrm{D} \rightarrow(\mathrm{Q})$

MATHEMATICS

41. (4)
42. (2)
43. (5)
44. (5)
45. (0)
46. (2)
47. (1)
48. (2)
49. (A, B, D)
50. (A, B, D)
51. (A, D)
52. (B, C)
53. (A, B)
54. (A, C)
55. (B, C, D)
56. (C, D)
57. (A, D)
58. (A, D)
59. $A \rightarrow(P)$
$B \rightarrow(T)$
C \rightarrow (S)
$\mathrm{D} \rightarrow(\mathrm{Q})$
60. $A \rightarrow(Q)$
$B \rightarrow(R)$
$C \rightarrow(Q)$
$D \rightarrow(P, Q, R, S, T)$

CODE

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Time : 3 hrs
MOCK TEST - I

for JFE (Advanced) - 2022
 Paper - I

MM : $\mathbf{2 6 4}$

ANSWER \& SOLUTIONS

PART - I : PHYSICS

1. Answer (6)

$$
\begin{aligned}
a & =\frac{(V)\left(2 \rho_{0}\right)(12)-V \times \rho_{0} \times 10}{V \times 2 \rho} \\
& =6 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

2. Answer (4)

In one case image is virtual ($u=-15 \mathrm{~cm}$)
In another case image is real ($u=-40 \mathrm{~cm}$)
$v_{1}=\frac{u f}{u+f}=\frac{-10 f}{-10+f}$
$v_{2}=\frac{-10 f}{-40+f}$
In both situations, sign convention is opposite
$\Rightarrow \quad v_{2}=v_{1}$
$\Rightarrow \quad v_{2}=\frac{-10 f}{-10+f}=\frac{40 f}{-40+f}$
$f=16 \mathrm{~cm}$
3. Answer (8)
$\frac{d w}{d t} \propto v^{2}$
$P=(\ln \sqrt{2}) v^{2}$
$F V=(\ln \sqrt{2}) v^{2}$
$m \frac{d v}{d t}=\ln \sqrt{2} v$
$\left.\ln v\right|_{v_{0}} ^{2 v_{0}}=\ln \sqrt{2} \frac{t}{m}$
$t=2 \mathrm{~m}$
$t=2 \times 4=8 \mathrm{sec}$
4. Answer (8)

At null point potential gradient across
$A B=\frac{1}{10} \frac{\mathrm{~V}}{\mathrm{~cm}}$
If switch S_{1} is closed, emf of 5 V battery is balanced by length $A J=l_{1}$

$$
\begin{aligned}
& \therefore \quad 5=\frac{1}{10} \times l_{1} \\
& \Rightarrow \quad l_{1}=50 \mathrm{~cm}
\end{aligned}
$$

If switch S_{2} is closed, emf of 3 V battery is balanced by length $B J=l_{2}$

$$
\begin{array}{rlrl}
\therefore & & 3 & =\frac{1}{10} \times l_{2} \\
& l_{2}=30 \mathrm{~cm} \\
\therefore & l_{1}+l_{2}=80 \mathrm{~cm}
\end{array}
$$

5. Answer (0)
$U_{i}=U_{f} \Rightarrow \Delta U=0$
6. Answer (3)

For open circuit
Let current in the circuit be I, applying Kirchhoff's law, we get
$5 I R=3 \times 15$
$\Rightarrow \quad I=\frac{45}{5 R}=\frac{45}{5 \times 100}=9 \times 10^{-2} \mathrm{~A}$
$V_{A B}=V_{A}-V_{B}=-2 \times 100 \times 9 \times 10^{-2}+15=-3 V$
7. Answer (8)

Since, A and B connected,
Hence, $\left|V_{1}\right|=\left|V_{2}\right|$
$E_{1} d_{1}=E_{2} d_{2}$
$\frac{\sigma_{1} d_{1}}{\varepsilon_{0}}=\frac{\sigma_{2} d_{2}}{\varepsilon_{0}}$
$\sigma_{1} d_{1}=\sigma_{2} d_{2}$ or $5 \sigma_{1}=8 \sigma_{2}$
$\Rightarrow \frac{5 \sigma_{1}}{\sigma_{2}}=8$
8. Answer (8)
$62.1 \mathrm{eV}=\frac{h c}{\lambda_{0}}=\frac{1242 \mathrm{eV}-\mathrm{nm}}{\lambda_{0}}=\lambda_{0}=20 \mathrm{~nm}$
\therefore Photoelectric emission takes place only for λ_{1} and λ_{2}

Now, for any wavelength
In time $t \rightarrow$ Energy incident $=P t$
\therefore In time $t \rightarrow$ No. of photon incident

$$
=\frac{P t}{\left(\frac{h c}{\lambda}\right)}=\frac{\lambda P t}{h c}
$$

\therefore Number of photoelectrons emitted
$=\frac{1}{2}\left(\frac{\lambda p t}{h c}\right)$
$\therefore \quad$ Charge developed $=\frac{1}{2} \frac{(\lambda p t)}{(h c)} \times(e)$
\therefore Potential difference across the resistor

$$
=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda p t e}{2 h c r}
$$

$$
\begin{aligned}
\therefore \quad V_{1} & =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\lambda_{1}}{h c}\right)\left(\frac{p t e}{2 r}\right) \\
V_{2} & =\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\lambda_{2}}{h c}\right)\left(\frac{p t e}{2 r}\right)
\end{aligned}
$$

$\therefore V_{1}=\left(9 \times 10^{9}\right)\left(\frac{12.42 \mathrm{~nm}}{1242 \mathrm{eV}-\mathrm{nm}}\right) \frac{\left(10^{-3}\right) t(e)}{2 \times 10^{-3}}$
$=9 \times 10^{-9} \times\left(\frac{1}{100}\right) \times\left(\frac{1}{2}\right) \times t=4.5 \times 10^{7} t$
$V_{2}=\left(9 \times 10^{9}\right)\left(\frac{6.21 \mathrm{~nm}}{1242 \mathrm{eV}-\mathrm{nm}}\right) \frac{\left(10^{-3}\right)(t)(e)}{2 \times 10^{-3}}$

$$
=9 \times 10^{-9} \times \frac{1}{200} \times\left(\frac{t}{2}\right)=\frac{4.5}{2} \times 10^{7} t
$$

$\therefore \quad V=V_{1}+V_{2}=\frac{3}{2} \times(4.5) \times 10^{7} \times t$
$\therefore \quad I=\frac{V}{R}$
9. Answer (A, C)

Shape of the string at $t=0$ and $t=0.2 \mathrm{~s}$ has been shown below

$\Rightarrow y=\frac{5}{6} \mathrm{~cm}, \lambda=1$

$$
v=-(\text { wave velocity }) \frac{\partial y}{\partial x}
$$

$$
=(-10) \frac{1}{6}=-\frac{5}{3} \mathrm{~cm} / \mathrm{s}
$$

10. Answer (A, C)
$80 \times S_{1}+45 S_{2}=0$
$S_{2}-S_{1}=5$
$125 S_{1}+225=0$
$m_{1} v_{1}+m_{2} v_{2}=0$
$\frac{50}{80}=a_{1}$
$v_{1}=\frac{5}{8} \mathrm{~m} / \mathrm{s}$
$\frac{50}{45}=a_{2}$
$v_{2}=\frac{10}{9} \mathrm{~m} / \mathrm{s}$
$v_{\text {rel }}=\frac{5}{8}+\frac{10}{9}=\frac{125}{72}$

11 Answer (B, C)
Pressure will decrease and hence variable force has to be applied and gas is expanding, so heat absorbed by the gas.
12. Answer (A, B)

$v_{\mathrm{cm}}=\frac{-4+1}{2}=-\frac{3}{2}$
$v_{1}=\frac{5}{2}+\frac{3}{2}=4 \mathrm{~m} / \mathrm{s}$
$v_{2}=0$
13. Answer (A, B, D)

Let V_{D} be the potential of D, then
$\frac{V_{A}-V_{D}}{10}+\frac{V_{B}-V_{D}}{20}+\frac{V_{C}-V_{D}}{30}=0$
$\Rightarrow \quad V_{D}=40 \mathrm{~V}$
Also, ratio of current in $A D, D B$ and $D C$ are $\frac{70-40}{10}: \frac{40}{20}: \frac{40-10}{30}$
i.e. $3: 2: 1$

Also, total power network draws, $P=\sum R R=200 \mathrm{~W}$
14. Answer (A, B, C, D)
$f_{\max }$ on $A=0.3 \times 5 \times 10=15 \mathrm{~N}$
$f_{\max }$ on $B=0.5 \times(5+15) \times 10=100 \mathrm{~N}$
If block B does not start sliding on the ground surface, then the friction between A and B will be zero.
15. Answer (A, C)

For missing wavelength, minima is formed

$$
\begin{aligned}
& \therefore D x=\frac{\left(\frac{d}{2}\right) \times d}{D}=\left(n+\frac{1}{2}\right) \lambda \\
& \text { For } n=0 \quad \lambda=\frac{d^{2}}{D} \\
& \frac{d}{2 D}=(2 n+1) \frac{\lambda}{2} \\
& n=1 \quad \lambda=\frac{d^{2}}{3 D}
\end{aligned}
$$

16. Answer (A, C)

$$
\begin{aligned}
& W_{O \rightarrow A \rightarrow C}=y^{2} d y=\frac{y^{3}}{3}=\frac{1}{3} \\
& \begin{aligned}
W_{O \rightarrow C} & =\frac{2}{5}(1)=\frac{2}{5} \mathrm{~J} \\
& =2 x^{4} d x=\frac{2}{5} x^{5}
\end{aligned}
\end{aligned}
$$

17. Answer (A, B, D)

$$
a=k x^{2} \Rightarrow \frac{d a}{d x}=2 k x
$$

$$
\text { at } \quad x=1, \frac{d a}{d x}=1 \Rightarrow k=\frac{1}{2}
$$

$$
\Rightarrow \quad a=\frac{k x^{2}}{2} \Rightarrow v \frac{d v}{d x}=\frac{x^{2}}{2}
$$

$$
\Rightarrow \quad \int_{0}^{v} v d v=\int_{0}^{x} \frac{x^{2}}{2} d x \Rightarrow \frac{v^{2}}{2}=\frac{x^{3}}{6}
$$

$\Rightarrow \quad v^{2}=\frac{x^{3}}{3}$
18. Answer (A, C, D)

Impulse due to normal reaction is finite from the ground. So friction force gives finite impulse. Therefore frictional torque causes a finite angular impulse about center of mass of system so angular momentum about center of mass of system will change.
19. Answer $(A \rightarrow P, S) ;(B \rightarrow S) ;(C \rightarrow R, S) ;(D \rightarrow P, T)$
20. Answer $(A \rightarrow Q, R, S)$; $(B \rightarrow P, S) ;(C \rightarrow P) ;(D \rightarrow Q, R)$

PART - II : CHEMISTRY

21. Answer (5)

$$
\begin{aligned}
& 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~s}) \\
& \text { Initial moles of } \mathrm{NO}=\frac{1200 \times 0.25}{760 \times \mathrm{R} \times 220}=\frac{300}{760 \times \mathrm{R} \times 220} \\
& \text { Initial moles of } \mathrm{O}_{2}=\frac{900 \times 0.15}{760 \times \mathrm{R} \times 220}
\end{aligned}
$$

$$
=\frac{135}{760 \times R \times 220}
$$

$\therefore \mathrm{O}_{2}$ is the limiting reactant
\therefore Moles of NO remaining after the reaction
$=\frac{300-2 \times 135}{760 \times R \times 220}=\frac{30}{760 \times R \times 220}$
P , pressure of remaining NO gas $=$
$\frac{30 \times 760 \times P \times 220}{760 \times P \times 220 \times 0.40}=75$ torr

$$
\frac{P}{15}=5
$$

22. Answer (2)

Suppose the mol. wt. of the solute is M
Mole of solute $=\frac{10}{M}$
Mole of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{180}{18}=10$
Mole fraction of solute $=\frac{\frac{10}{M}}{\frac{10}{M}+10}=\frac{1}{M+1}$

We know, relative lowering of vapour pressure = mole fraction of solute
$0.005=\frac{1}{M+1}$
$M=199$
23. Answer (8)
$\mathrm{MnO}_{4}^{-}+\mathrm{X}^{\mathrm{n}+}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{XO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$
n -factor of $\mathrm{MnO}_{4}^{-}=5$
n-factor of $\mathrm{X}^{\mathrm{n}+}=(5-\mathrm{n})$
Equivalents of $\mathrm{MnO}_{4}^{-}=$Equivalents of $\mathrm{X}^{\mathrm{n}+}$

$$
1.61 \times 10^{-3} \times 5=2.68 \times 10^{-3} \times(5-n)
$$

$\Rightarrow \mathrm{n}=2$
Equivalent weight of $\mathrm{XCl}_{2}=84 \mathrm{~g}_{\text {equiv }}{ }^{-1}$
Molecular mass of $\mathrm{XCl}_{2}=84 \times 2=168 \mathrm{~g} \mathrm{~mol}^{-1}$
Atomic mass of $X=168-71=97=9 \times 10+7$
$\therefore \quad \mathrm{a}=9$ and $\mathrm{b}=7$

$$
\frac{a+b}{n}=\frac{9+7}{2}=8
$$

24. Answer (6)

$\Delta \mathrm{U}=210 \mathrm{~J} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{PV} \quad[\mathrm{P}=1 \mathrm{bar}]$
$=210+P\left[\frac{M}{d_{2}}-\frac{M}{d_{1}}\right] \times 100 \quad[\because 1 \mathrm{~L}$ bar $=100 \mathrm{~J}]$
$=210+100\left[\frac{100}{2.93 \times 10^{3}}-\frac{100}{2.71 \times 10^{3}}\right]=210-0.277$
$=209.723 \mathrm{~J} \mathrm{~mol}^{-1} ; \frac{\Delta \mathrm{H}}{35} \simeq 6 \mathrm{~J} \mathrm{~mol}^{-1}$
25. Answer (2)

It is a zero order reaction
Conc. of H^{+}ions in a drop $=\frac{6 \times 10^{-7}}{.05 \times 10^{-3}}=1.2 \times 10^{-2} \mathrm{M}$
Rate constant, $\mathrm{k}=6 \times 10^{5} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
Time, $t=\frac{1.2 \times 10^{-2}}{6.0 \times 10^{5}}=2 \times 10^{-8} \mathrm{sec}=x \times 10^{-8} \mathrm{sec}$

$$
\therefore x=2
$$

26. Answer (7)

Dichlorosubstituted products

27. Answer (6)

(A)

Molecular mass of $(A)=141$
Sum of the digits of $M=1+4+1=6$
28. Answer (4)
$x=12$
$y=12$
$z=6$
$\mathrm{w}=6$
29. Answer (A, B, D)

Factual
30. Answer (C, D)

Decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ follows first order kinetics

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Initial conc. 2 M
Conc. at time t $2(1-0.40) 1.6 \quad 0.40[\alpha=40 \%]$
$\mathrm{k}=6.2 \times 10^{-4} \mathrm{sec}^{-1}$

$$
\mathrm{t}_{1 / 2}=\frac{0.693}{6.2 \times 10^{-4}}=1117.7 \mathrm{sec}
$$

Initial moles of reaction mix.
No. of moles of reaction mix. after 40\% dissociation
$=\frac{2}{3.2}=\frac{5}{8}$
$\mathrm{t}=\frac{2.303}{6.2 \times 10^{-4}} \log \frac{10}{6}=824.6 \mathrm{sec}$.
Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
If volume of reaction mixture is doubled, the rate of reaction becomes half of initial rate.
31. Answer (A, B, C, D)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOK} \rightarrow \mathrm{K}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$

$$
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

Cathode : $2 \mathrm{H}^{+}+2 \mathrm{e} \rightarrow \mathrm{H}_{2}$

32. Answer (A, C)

33. Answer (A, B, C, D)
γ - radiation is emitted from the excited daughter nuclei
34. Answer (A, B, D)

Consider the Van't Hoff factor
35. Answer (A, B, C, D)

Ethanol is weaker than any of these acids.
36. Answer (A, B, C)
(A) Oxidation state of N in the given compounds

$$
\stackrel{-2}{\mathrm{~N}}_{2} \mathrm{H}_{4}<\stackrel{-1}{\mathrm{~N}} \mathrm{H}_{2} \mathrm{OH}<\stackrel{+1}{\mathrm{~N}_{2} \mathrm{O}}<\stackrel{+3}{\mathrm{~N}_{2}} \mathrm{O}_{3}
$$

(B) Oxidising power of halogens is decided by their SRP values and it decreases down the group.
(C) Boiling point of hydrides of group-15 elements is mainly decided by their molecular mass as well as H -bonds in liquid $\mathrm{NH}_{3} . \mathrm{PH}_{3}$ has the lowest boiling point and it increases with the increase in molecular mass except NH_{3} whose boiling point lies between AsH_{3} and SbH_{3} due to H -bonding.
(D) Among alkali metals Na is the weakest and Li is the strongest reducing agent.
37. Answer (A, B, D)
(A) Thermal stability of alkali metal hydrides is decided by their lattice energy. Higher the lattice energy, higher will be the stability.
(B) KO_{2} is paramagnetic as O_{2}^{-1} has one unpaired electron
(C) Milk of magnesia is used as an antacid
(D) BeCl_{2} in the solid state exists as linear polymeric chain
38. Answer (A)

Compound (A) is neither phenol (no colour with FeCl_{3}) nor has a carboxylic functional group (does not dissolve in aq. NaHCO_{3})
39. Answer $(A \rightarrow P, S) ;(B \rightarrow Q, R, T) ;(C \rightarrow P, S) ;(D \rightarrow Q, R, T)$
40. Answer $(A \rightarrow T)$; $(B \rightarrow P, S) ;(C \rightarrow R, S) ;(D \rightarrow Q)$

PART - III : MATHEMATICS

41. Answer (4)

Point on $C_{1}:|z-3-4 i|=5$
where $|z|$ is maximum is
$P \equiv 6+8 i$
Let complex number corresponding to point Q be z_{2}

Taking rotation of $6+8 i$ about $3+4 i$, we get
$\frac{z_{2}-(3+4 i)}{6+8 i-(3+4 i)}=e^{i \tan ^{-1} \frac{3}{4}}$
$z_{2}=(3+4 i)+(3+4 i)\left(\cos \left(\tan ^{-1} \frac{3}{4}\right)+i \sin \left(\tan ^{-1} \frac{3}{4}\right)\right)$
$=3+4 i+(3+4 i)\left(\frac{4}{5}+i \frac{3}{5}\right)$
$=3+4 i+\frac{1}{5}(3+4 i)(4+3 i)=3+9 i$
\therefore Complex number corresponding to R, $z_{3}=3+7 i$
42. Answer (2)

We have,
$S_{100}=\frac{0}{\left({ }^{100} C_{0}\right)^{5}}+\frac{1}{\left({ }^{100} C_{1}\right)^{5}}+\frac{2}{\left({ }^{100} C_{2}\right)^{5}}+\ldots .+\frac{100}{\left({ }^{100} C_{100}\right)^{5}}$

Also,
$S_{100}=\frac{100}{\left({ }^{100} C_{0}\right)^{5}}+\frac{(100-1)}{\left({ }^{100} C_{1}\right)^{5}}+\frac{(100-2)}{\left({ }^{100} C_{2}\right)^{5}}+\ldots .+\frac{0}{\left({ }^{100} C_{100}\right)^{5}}$
\therefore On adding (1) and (2), we get
$2 S_{100}=100 t_{100} \Rightarrow \frac{S_{100}}{100 t_{100}}=\frac{1}{2}$
Hence, $\sec \left(\cos ^{-1}\left(\frac{S_{100}}{100 t_{100}}\right)\right)=\sec \left(\cos ^{-1} \frac{1}{2}\right)$
$=\sec \left(\frac{\pi}{3}\right)=2$
43. Answer (5)
$I=\operatorname{Lim}_{x \rightarrow \infty} x \ln \left(\frac{e(1+(1 / x))}{(1+(1 / x))^{x}}\right)(\infty \times 0$ form $)$
$=\operatorname{Lim}_{x \rightarrow \infty} x\left(1+\ln \left(1+\frac{1}{x}\right)-x \ln \left(1+\frac{1}{x}\right)\right)$
put $x=\frac{1}{t}$; as $x \rightarrow \infty, t \rightarrow 0$
Hence $I=\operatorname{Lim}_{t \rightarrow 0} \frac{1}{t}\left(1+\ln (1+t)-\frac{\ln (1+t)}{t}\right)$
$=\operatorname{Lim}_{t \rightarrow 0}\left[\ln (1+t)^{1 / t}+\frac{t-\ln (1+t)}{t^{2}}\right]$
$=1+\operatorname{Lim}_{y \rightarrow 0}\left(\frac{e^{y}-1-y}{y^{2}}\right)$ where $\ln (1+t)=y ;$
$1+t=e^{y}$, hence $t=e^{y}-1$
$=1+\frac{1}{2}=\frac{3}{2}=\frac{m}{n}$
$\Rightarrow(m+n)=5$
44. Answer (5)

Expression
$=\cos ^{2} \frac{\pi}{11}+\cos ^{2} \frac{2 \pi}{11}+\cos ^{2} \frac{3 \pi}{11}+\cos ^{2} \frac{4 \pi}{11}+\cos ^{2} \frac{5 \pi}{11}$
$=\frac{1}{2}\left[\left(1+\cos \frac{2 \pi}{11}\right)+\left(1+\cos \frac{4 \pi}{11}\right)+\ldots \ldots+\left(1+\cos \frac{10 \pi}{11}\right)\right]$
$=\frac{1}{2}[5+\underbrace{\left(\cos \frac{2 \pi}{11}+\cos \frac{4 \pi}{11}+\cos \frac{6 \pi}{11}+\ldots \ldots+\cos \frac{10 \pi}{11}\right)}_{S}]$

On multiplying and dividing the series S by $2 \sin \frac{\pi}{11}$, we get
$\frac{1}{2 \sin \frac{\pi}{11}}\left[\left(\sin \frac{3 \pi}{11}-\sin \frac{\pi}{11}\right)+\left(\sin \frac{5 \pi}{11}-\sin \frac{3 \pi}{11}\right)+\ldots \ldots+\left(\sin \pi-\sin \frac{9 \pi}{11}\right)\right]$
$=-\frac{1}{2}$
Hence expression $=\frac{1}{2}\left[\left(5-\frac{1}{2}\right)\right]=\frac{9}{4}=\frac{p}{q}$
$\Rightarrow|p-q|=5$
45. Answer (0)
$B A=I-A C-B C$
$B A C=C-A C^{2}-B C^{2}=C-(A+B) C^{2}$
$C-B A C=(A+B) C^{2}$
$\Rightarrow A+B+C-B A C=A+B+(A+B) C^{2}=(A$
$+B)\left(I+C^{2}\right)$
$\operatorname{det}(A+B+C-B A C)=\operatorname{det}(A+B) \operatorname{det}\left(I+C^{2}\right)=0$
46. Answer (2)

Let E_{i} be the event of getting i on the die.
Obviously, $\sum_{i=1}^{6} P\left(E_{i}\right)=1$
$\sum_{i=1}^{6} \lambda_{i}^{2}=1 \Rightarrow \lambda=\frac{1}{91}$
let A be the event of not getting an even number
$\Rightarrow A=E_{1} \cup E_{3} \cup E_{5}$
$P(A)=P\left(E_{1}\right)+P\left(E_{3}\right)+P\left(E_{5}\right)=35 \lambda$
\therefore Required probability $=P\left(E_{5} / A\right)=$
$\frac{P\left(E_{5} / A\right)}{P(A)}=\frac{P\left(E_{5}\right)}{P(A)}=\frac{25 \lambda}{35 \lambda}=\frac{5}{7}=\frac{m}{n}$.
47. Answer (1)

$y=m x+2 \Rightarrow x=\left(\frac{y-2}{m}\right)$
$x=2 y-y^{2}$
$(y-1)^{2}=-(x-1)$ vertex $(1,1)$
From (1) and (2), $\frac{y-2}{m}=2 y-y^{2}$
$\Rightarrow m y^{2}+(1-2 m) y-2=0 \quad \alpha \beta=-\frac{2}{m}$
$\alpha=2, \beta=-\frac{1}{m}$
Area $=\int_{-1 / m}^{2}\left[\left(2 y-y^{2}\right)-\frac{(y-2)}{m}\right] d y$
$\frac{9}{2}=\left[\frac{2 y^{2}}{2}-\frac{y^{3}}{3}-\frac{1}{m} \frac{y^{2}}{2}+\frac{2 y}{m}\right]_{-1 / m}^{2}$
$\frac{9}{2}=\left(\frac{4}{3}+\frac{2}{m}+\frac{1}{6 m^{3}}+\frac{1}{m^{2}}\right)$
$m=1$ satisfy the equation
$\Rightarrow m=1$
48. Answer (2)

Since $[x]$ is an integer
$\therefore x+1=2 k ; k \in I$
$\Rightarrow\left[\frac{3(2 k-1)^{2}-2(2 k-1)+1}{2}\right]=k$
$\Rightarrow\left[\frac{12 k^{2}-12 k+3-4 k+2+1}{2}\right]=k$
$\Rightarrow\left[6 k^{2}-8 k+3\right]=k \Rightarrow 6 k^{2}-8 k+3=k$
$\therefore 6 k^{2}-9 k+3=0$
$\Rightarrow 2 k^{2}-3 k+1=0 \Rightarrow(k-1)(2 k-1)=0$
$\therefore k=1 ; k=\frac{1}{2}($ reject as $k \in \Lambda) \Rightarrow k=1$
$\therefore x=1$ so, $n=1$
Hence $\frac{1}{\pi}\left(\frac{\pi}{2}+\frac{\pi}{4}+\pi+\frac{\pi}{4}\right)=2$.
49. Answer (A, B, D)
$\frac{d y}{d x}+y=f(x)$
I.F. $=e^{x}$
$y e^{x}=\int e^{x} f(x) d x+C$
now if $0 \leq x \leq 2$ then $y e^{x}=\int e^{x} e^{-x} d x+C$
$\Rightarrow y e^{x}=x+C$
$x=0, y(0)=1, \quad C=1$
$\therefore y e^{x}=x+1$
$y=\frac{x+1}{e^{x}} ; y(1)=\frac{2}{e} \Rightarrow(\mathrm{~A})$ is correct
$y^{\prime}=\frac{e^{x}-(x+1) e^{x}}{e^{2 x}}$
$y^{\prime}(1)=\frac{e-2 e}{e^{2}}=\frac{-e}{e^{2}}=-\frac{1}{e}$
$\Rightarrow(B)$ is correct
if $x>2$

$$
\begin{aligned}
& y e^{x}=\int e^{x-2} d x \\
& y e^{x}=e^{x-2}+C \\
& y=e^{-2}+C e^{-x}
\end{aligned}
$$

as y is continuous

$$
\begin{aligned}
\therefore & \operatorname{Lim}_{x \rightarrow 2} \frac{x+1}{e^{x}}=\operatorname{Lim}_{x \rightarrow 2}\left(e^{-2}+C e^{-x}\right) \\
& 3 e^{-2}=e^{-2}+C e^{-2} \Rightarrow C=2
\end{aligned}
$$

\therefore for $x>2$
$y=e^{-2}+2 e^{-x} \quad$ hence $y(3)=2 e^{-3}+e^{-2}$
$=e^{-2}\left(2 e^{-1}+1\right)$
$y^{\prime}=-2 e^{-x}$
$y^{\prime}(3)=-2 e^{-3} \quad \Rightarrow(D)$ is correct
50. Answer (A, B, D)

$$
\begin{array}{rr}
y^{2}-4 y+3=0 & \text { and } \\
& x^{2}+4 x y+4 y^{2}-5 x- \\
10 y+4 & =0 \\
(y-3)(y-1) & (x+2 y-1)(x+2 y- \\
4) & =0
\end{array}
$$

$$
y=1, y=3
$$

$\ell(A B)=3$ and $\quad h=2$

Area of parallelogram $=3 \times 2=6$
$\therefore A C=\sqrt{1^{2}+2^{2}}=\sqrt{5}, B D=\sqrt{7^{2}+2^{2}}=\sqrt{53}$
51. Answer (A, D)

Figure is self explanatory.

52. Answer (B, C)

We have, $f(2 x)-f(2 x) f\left(\frac{1}{2 x}\right)+f\left(16 x^{2} y\right)=$ $f(-2)-f(4 x y)$

Replacing y by $\frac{1}{8 x^{2}}$, we get
$f(2 x)-f(2 x) f\left(\frac{1}{2 x}\right)+f(2)=f(-2)-f\left(\frac{1}{2 x}\right)$
$f(2 x)+f\left(\frac{1}{2 x}\right)=f(2 x) f\left(\frac{1}{2 x}\right) \quad($ As $f(x)$ is even)
$\therefore f(2 x)=1 \pm(2 x)^{n}$
$\Rightarrow f(x)=1 \pm x^{n}$
Now $f(4)=1 \pm 4^{n}=-255 \quad$ (Given)
Taking negative sign, we get $256=4^{n}$
$\Rightarrow n=4$
Hence $f(x)=1-x^{4}$, which is even function.
Now $|f(x)|=k-2$

Graph of $f(x)$
$\Rightarrow 0<k-2<1 \Rightarrow 2<k<3$
Clearly $f(x)$ has local maximum at $x=0$.
Also $\int_{0}^{1} f(x) d x=\int_{0}^{1}\left(1-x^{4}\right) d x=\left(1-\frac{x^{5}}{5}\right)_{0}^{1}=$
$1-\frac{1}{5}=\frac{4}{5}$.
53. Answer (A, B)

We have, $\cot ^{-1} \frac{1}{x}=\left[\begin{array}{cc}\pi+\tan ^{-1} x, & x<0 \\ \tan ^{-1} x, & x>0\end{array} \quad\right.$ and
$\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \quad \forall x \in R$
Now, let $J=\int_{-1}^{2}\left(\cot ^{-1} \frac{1}{x}+\cot ^{-1} x\right) d x$
$=\int_{-1}^{0}\left(\cot ^{-1} \frac{1}{x}+\cot ^{-1} x\right) d x+\int_{0}^{2}\left(\cot ^{-1} \frac{1}{x}+\cot ^{-1} x\right) d x$
$=\frac{3 \pi}{2}+\pi=\frac{5 \pi}{2}$
And
$K=\int_{-2 \pi}^{7 \pi} \frac{\sin x}{|\sin x|} d x=\int_{6 \pi}^{7 \pi} 1 . d x=\pi$
54. Answer (A, C)

Clearly, from the given figure,
$a<0, c>0$.
Also, $\frac{-b}{2 a}>0 \Rightarrow b>0$
So, $a b c<0$
Also, $f(-1)=a-b+c=0$ and $f(3)$

$$
=9 a+3 b+c=0
$$

Clearly, $f\left(\frac{1}{3}\right)>0$
$\Rightarrow \frac{a}{9}+\frac{b}{3}+c>0$
$\Rightarrow a+3 b+9 c>0$.
Also $f\left(\frac{-1}{3}\right)>0$
$\Rightarrow \frac{a}{9}-\frac{b}{3}+c>0$

$$
\Rightarrow a-3 b+9 c>0
$$

Now, verify alternatives.
55. Answer (B, C, D)

The fact that the two circumcircles are congruent means the chord $A D$ must subtend the same angle in both the circles.
i.e. $\angle A B C=\angle A C B$
$\Rightarrow \triangle A B C$ is isosceles.
Now $A M$ is the altitude of $\triangle A B C$

$$
A M=12 \quad \Rightarrow \quad \text { Area }=\frac{18 \cdot 12}{2}=108
$$

$$
\left(\Delta=\frac{1}{2}(\text { base })(\text { altitude })\right.
$$

Also $\tan B=\tan C=\frac{12}{9}$
$\Rightarrow B=\tan ^{-1}\left(\frac{4}{3}\right)$
$\therefore \angle A=\pi-2 \tan ^{-1}\left(\frac{4}{3}\right)$
$=\pi-\left[\pi+\tan ^{-1} \frac{2 \cdot(4 / 3)}{1-(16 / 9)}\right]$
$=\tan ^{-1}\left(\frac{24}{7}\right)$
56. Answer (C, D)
$(a-1)\left(x^{2}+\sqrt{3} x+1\right)^{2}-(a+1)\left[\left(x^{2}+1\right)^{2}-\right.$ $\left.(x \sqrt{3})^{2}\right) \leq 0$
or $(a-1)\left(x^{2}+\sqrt{3} x+1\right)^{2}-(a+1)\left[x^{2}+x \sqrt{3}+\right.$

1) $\left(x^{2}-x \sqrt{3}+1\right) \leq 0$
$\left(x^{2}+\sqrt{3} x+1\right)\left[(a-1)\left(x^{2}+\sqrt{3} x+1\right)-(a+1)\right.$
$\left.\left(x^{2}-\sqrt{3} x+1\right)\right] \leq 0 \quad \forall x \in R$
$\Rightarrow-2\left(x^{2}+1\right)+2 a \sqrt{3} x \leq 0$
$\Rightarrow x^{2}-a \sqrt{3} x+1 \geq 0 \quad \forall x \in R$
$\Rightarrow 3 a^{2}-4 \leq 0 \quad(D \leq 0)$
$\Rightarrow a \in\left[-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right]$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ -\sqrt{3}-2 / \sqrt{3}-1 & 0 & 1 & 2 / \sqrt{3} & \sqrt{3}\end{array}$
\Rightarrow Number of possible integral value of a is $\{-1,0,1\}$
$\Rightarrow 3$
and sum of all integral values of a is $-1+0+$ $1=0$
57. Answer (A, D)

Let the plane is
$(2 x+3 y-z+1)+\lambda(x+y-2 z+3)=0$
$(2+\lambda) x+(3+\lambda) y-(1+2 \lambda) z+1+3 \lambda=0$
$\Rightarrow 3(2+\lambda)-(3+\lambda)+2(1+2 \lambda)=0$
$+6 \lambda+5=0 \Rightarrow \lambda=-5 / 6$
Putting value of λ in (1)
$7 x+13 y+4 z-9=0 \Rightarrow \alpha=9$
Now image of $(1,1,1)$ in plane π is
$\frac{x-1}{7}=\frac{y-1}{13}=\frac{z-1}{4}=-2\left(\frac{7+13+4-9}{49+169+16}\right)$
$\frac{x-1}{7}=\frac{y-1}{13}=\frac{z-1}{4}=-\frac{15}{117}$
$x=\frac{12}{117}, y=\frac{-78}{117}, z=\frac{57}{117} \Rightarrow \beta=117$.
58. Answer (A, D)

Squaring and adding the given equations,

$$
4+9+12 \sin (x+y)=25
$$

$\Rightarrow \sin (x+y)=1=\sin \frac{\pi}{2}$
$\therefore x+y=2 n \pi+\frac{\pi}{2}=(4 n+1) \frac{\pi}{2} \quad n \in I \Rightarrow(\mathbf{A})$
if $x+y=\frac{\pi}{2} \quad \Rightarrow \quad y=\frac{\pi}{2}-x$
$5 \sin x=3 \quad \Rightarrow \quad \sin x=\frac{3}{5}$
or $\cos x=\frac{4}{5}$
also
$\cos y=\frac{3}{5}$ and $\sin y=\frac{4}{5} ;$ hence $y>x$
59. Answer $(\mathrm{A} \rightarrow \mathrm{P}) ;(\mathrm{B} \rightarrow \mathrm{T}) ;(\mathrm{C} \rightarrow \mathrm{S}) ;(\mathrm{D} \rightarrow \mathrm{Q})$
(A) $\left.I_{1}=\int_{0}^{\infty} x^{7} \cdot e^{-x^{2}} d x=e^{-x^{2}} \cdot \frac{x^{8}}{8}\right]_{0}^{\infty}-\int_{0}^{\infty}(-2 x) e^{-x^{2}} \cdot \frac{x^{8}}{8} d x$

$$
=0+\frac{2}{8} \cdot l_{2}
$$

$\Rightarrow \frac{I_{2}}{I_{1}}=4$
(B) $x^{4}-13 x^{2}+36 \leq 0$
$\Rightarrow\left(x^{2}-9\right)\left(x^{2}-4\right) \leq 0$
$\Rightarrow x \in[-3,-2] \cup[2,3]$
Now, let
$f(x)=x^{3}-3 x \Rightarrow f^{\prime}(x)=3\left(x^{2}-1\right)>0 \quad \forall x$
$\in[-3,-2] \cup[2,3]$
$\therefore \quad f_{\text {max. }}(x=3)=(3)^{3}-3(3)=27-$ $9=18$.
(C) Any circle through $(2,2)$ and $(9,9)$ is

$$
\begin{equation*}
(x-2)(x-9)+(y-2)(y-9)+\lambda(y-x)=0 \tag{1}
\end{equation*}
$$

For the point of intersection with x-axis, we put $y=0$ in (1), we get
$(x-2)(x-9)+18-\lambda x=0$
Put disc. $=0 \Rightarrow(11+\lambda)^{2}-4 \cdot 36=0$

$$
\Rightarrow \lambda=-23,1
$$

$$
\therefore \quad x=\frac{11+\lambda}{2}= \pm 6
$$

So, the absolute value of the difference of x-coordinate of the point of contact $=\mid 6-$ $(-6) \mid=12$
(D) $\quad y=\cos ^{-1}\left(3 x-4 x^{3}\right)=\frac{\pi}{2}-\sin ^{-1}\left(3 x-4 x^{3}\right)=$

$$
\frac{\pi}{2}-\left(\pi-3 \sin ^{-1} x\right)
$$

because $\sin ^{-1}\left(3 x-4 x^{3}\right)=\pi-3 \sin ^{-1} x$ if $x \in\left[\frac{1}{2}, 1\right]$

Hence $\frac{d y}{d x}=\frac{3}{\sqrt{1-x^{2}}}$

$$
\left.\frac{d y}{d x}\right]_{x=\frac{\sqrt{3}}{2}}=\frac{3}{\sqrt{1-\frac{3}{4}}}=6
$$

Alternatively (D): Clearly,

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-1 \times\left(3-12 x^{2}\right)}{\sqrt{1-\left(3 x-4 x^{3}\right)^{2}}} \\
& \left.\Rightarrow \frac{d y}{d x}\right]_{x=\frac{\sqrt{3}}{2}}=\frac{3\left(4 x^{2}-1\right)}{\sqrt{1-x\left(3-4 x^{2}\right)}}=6
\end{aligned}
$$

60. Answer $(\mathrm{A} \rightarrow \mathrm{Q}) ;(\mathrm{B} \rightarrow \mathrm{R}) ;(\mathrm{C} \rightarrow \mathrm{Q}) ;(\mathrm{D} \rightarrow \mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T})$
(A)

Solving, $\quad y=\frac{2 k^{2}-k}{3}>0$ and
$x=\frac{4 k-2 k^{2}}{3}>0$
Hence $k \in\left(\frac{1}{2}, 2\right)$
(B) Given, $g(x)=\ln \left(\cos ^{-1} x\right)$

As $\quad 0 \leq \cos ^{-1} x \leq \pi \forall x \in[-1,1]$
So, Domain of $g(x)=[-1,1)$
Hence, number of integers are two (i.e., -1 and 0).
(C) Clearly, domain of expression $=\{-1,1\}$. As $x>0$ (Given)

So, $x=1$
Hence, the value of expression
$\frac{\left(1+\sin ^{-1} x\right)^{2020}\left(1+\cos ^{-1} x\right)^{2021}\left(1+\tan ^{-1} x\right)^{2022}}{\left(1+\operatorname{cosec}^{-1} x\right)^{2020}\left(1+\sec ^{-1} x\right)^{2021}\left(1+\cot ^{-1} x\right)^{2022}}$
$=1$.
(D) $f(x)=\frac{x+a}{x+b}$

$$
\begin{equation*}
f^{-1}(x)=\frac{a-b x}{x-1} \tag{2}
\end{equation*}
$$

Given $f(x)=f^{-1}(x)$
$\Rightarrow \frac{x+a}{x+b}=\frac{a-b x}{x-1}$
$\Rightarrow(1+b) x^{2}+\left(b^{2}-1\right) x-a(1+b)=0$
$\forall x \in D_{f}$
Hence, $b=-1$ and $a \in R$.
Aliter: According to the given condition,

$$
\begin{aligned}
& x=f(f(x))=\frac{f(x)+a}{f(x)+b} \Rightarrow \mathrm{x}=\frac{\frac{x+a}{x+b}+a}{\frac{x+a}{x+b}+b} \\
& \Rightarrow \frac{x}{1}=\frac{(x+a)+a(x+b)}{(x+a)+b(x+b)} \\
& \Rightarrow \frac{x}{1}=\frac{(1+a) x+a(1+b)}{(1+b) x+\left(a+b^{2}\right)} \\
& \Rightarrow(1+b) x^{2}+\left(a+b^{2}\right) x=(1+a) x+a(1+b) \\
& \Rightarrow(1+b) x^{2}+\left(b^{2}-1\right) x-a(1+b)=0 \forall x \in D_{f}
\end{aligned}
$$

Hence, $b=-1$ and $a \in R$.

B
CODE

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Time : 3 hrs

MOCK TEST - I

MM : 264

for JEE (Advanced) - 2022
 Paper-2
 ANSWERS

PHYSICS

1. (8)
2. (2)
3. (3)
4. (5)
5. (5)
6. (4)
7. (6)
8. (2)
9. (A, B)
10. (A, D)
11. (A, B)
12. (C, D)
13. (A, C)
14. (B, C)
15. (B, D)
16. (A)
17. (B, C)
18. (A)
19. (A, B)
20. (C)

CHEMISTRY

21. (6)
22. (3)
23. (4)
24. (6)
25. (9)
26. (3)
27. (8)
28. (5)
29. (A, B, C)
30. (A, B)
31. (A, B, C, D)
32. (B, C)
33. (A, B, D)
34. (A, B, C)
35. (A, B, D)
36. (A, C)
37. (A)
38. (A)
39. (C)
40. (B)

MATHEMATICS

41. (6)
42. (5)
43. (3)
44. (5)
45. (0)
46. (3)
47. (1)
48. (8)
49. (C, D)
50. (A, B)
51. (B, D)
52. (A, B, D)
53. (B, D)
54. (B, D)
55. (B, C)
56. (B, D)
57. (A)
58. (A)
59. (A)
60. (B)

B
CODE

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Time: 3 hrs
MOCK TEST - I
MM : 264
for JEE (Advanced) - 2022
Paper-2
ANSWER \& SOLUTIONS

PART - I : PHYSICS

1. Answer (8)

$$
F=24 \times 10^{-21} \mathrm{~N}
$$

$$
\therefore \quad n=8
$$

2. Answer (2)

$1 \sin 90^{\circ}=1.25 \sin \theta$
$\theta=53^{\circ}$
$\frac{x}{3}=\tan \theta$
$\Rightarrow \quad x=4$
$r=6-4=2 \mathrm{~m}$
3. Answer (3)

$$
\begin{aligned}
& \Delta \mathrm{PE}=\Delta \mathrm{KE} \\
& \Rightarrow \quad m g h=\frac{1}{2} m v_{\mathrm{cm}}^{2}+\frac{1}{2}\left(\frac{2}{5}\right) m R^{2} \omega^{2} \\
& \text { Also } v_{\mathrm{cm}}=r \omega=\frac{R}{2} \omega \\
& v_{\max }=\left(R+\frac{R}{2}\right) \omega=\frac{3 R}{2} \omega \\
& =\left(\frac{3}{2}\right)(2) \sqrt{\frac{10 g h}{13}} \\
& =3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. Answer (5)

Case-1 :

' $;$ is very small $\Rightarrow R_{V}$ is very high

Case-2 :

V across ammeters is V, small $\Rightarrow R_{A}$ is very low
$\Rightarrow \quad$ From Case-1, we can say that
$V_{\text {cell }}=100$ volt
From Case-2, we can say

$$
\begin{aligned}
25 \times 10^{-3} & =V_{\text {cell }}-i r \\
& =10-2.5 r
\end{aligned}
$$

$$
r=40 \Omega
$$

5. Answer (5)
$f_{A}=\frac{340-10}{340-10+10} \times 85=\frac{330}{4} \mathrm{~Hz}$
$f_{B}=\frac{340+10}{340+10+10} \times 85=\frac{330}{4} \mathrm{~Hz}$
$f_{\text {beat }}=f_{B}-f_{A}=5 \mathrm{~Hz}$
6. Answer (4)

$$
\begin{aligned}
& \vec{p}=q \vec{l}=4\left[\overrightarrow{r_{2}}-\overrightarrow{r_{i}}\right] \\
& =4 \times 10^{-3}[(-1.2 \hat{i}+1.1 \hat{j})-(-1.4 \hat{i}-1.3 \hat{j})] \\
& =[-26 \hat{i}+2.4 \hat{j}] \times 10^{-3} \quad \vec{\tau}=\vec{p} \times \vec{E} \\
& =4 \times 10^{-3}[-2.6 \hat{i}+2.4 \hat{j}] \times[2500 \hat{i}-5000 \hat{j}] \\
& =[5.2 k-2.4 k]=28 \mathrm{~N}-\mathrm{m} k
\end{aligned}
$$

7. Answer (6)

Potential difference across the capacitor is

$$
V_{B}-O=\frac{q_{0}}{C}=\frac{16}{4}=4 \text { volt }
$$

E.M.F. of the battery $=24 \mathrm{~V}, Y=24$

Time constant
$\tau=R C$
$=(4 \Omega)(4 \mu \mathrm{~F})$
$=16 \mu \mathrm{~s}$
Equation of discharge
$q=q_{0} e^{-t / \tau}$
$4 \mu \mathrm{C}=16 \mu \mathrm{C} e^{\left(-\frac{x}{16}\right)}$
$X=32 \ln 2$
8. Answer (2)

$$
\begin{aligned}
& \frac{d N}{d t}=\frac{P_{0} \times \lambda}{h c} \times \eta \\
= & 0.1 \times \frac{6.63 \times 10^{-6} \times 300 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}=10^{12} \mathrm{sec}^{-1} \\
E= & h\left(f-f_{T}\right) \\
P= & 2.2 \times 10^{-4} \mathrm{~W}
\end{aligned}
$$

9. Answer (A, B)
$2 T \sin 37=2 \mathrm{mg}$

$$
\not 2 \times T_{1} \times \frac{3}{5}=\not 2 \mathrm{mg}
$$

$$
\Rightarrow \quad T_{1}=\frac{5 m g}{3}
$$

$$
\begin{aligned}
T_{2} & =T_{1} \cos 37 \\
& =\frac{5 \mathrm{mg}}{3} \times \frac{4}{5}=\frac{4 \mathrm{mg}}{3}
\end{aligned}
$$

10. Answer (A, D)

May be in uniform circular motion
11. Answer (A, B)

$v_{\mathrm{cm}}=\frac{v_{0}}{2}, \omega=\frac{v_{0}}{\ell}$
$T=\frac{2 \pi \ell}{v_{0}}, \frac{T}{4}=\frac{\pi \ell}{2 v_{0}}$
$\vec{S}_{1}=\vec{S}_{1, \mathrm{~cm}}+\vec{S}_{\mathrm{cm}}=\left(\frac{\ell}{2}+\frac{\pi \ell}{4}\right) \hat{j}+\frac{\ell}{2} \hat{i}$
$\vec{S}_{2}=\left(\frac{\pi \ell}{4}-\frac{\ell}{2}\right) \hat{j}+\frac{\ell}{2} \hat{i}$
12. Answer (C, D)

The wave speed depends on properties of the medium, not on how you generate the wave. For a string $v=\sqrt{T_{S} / \mu}$. Increasing the tension or decreasing the linear density (lighter string) will increase the wave speed.
13. Answer (A, C)

$$
\begin{gathered}
\overrightarrow{\Delta v}=\overrightarrow{v_{2}}-\overrightarrow{v_{1}}=(\hat{i}-\hat{j})-(-2 \hat{i}-3 \hat{j}) \\
=(3 \hat{i}+2 \hat{j}) \\
\Rightarrow \quad \overrightarrow{\Delta P}=(3 \hat{i}+2 \hat{j}) \\
\theta=\tan ^{-1}\left(\frac{2}{3}\right)
\end{gathered}
$$

14. Answer (B, C)

Force of upthrust will be there on mass m shown in given figure, so A weighs less than 2 kg . Balance will show sum of load of beaker and reaction of upthrust so it reads more than 5 kg .
15. Answer (B, D)

Since collision is perfectly inelastic so all the blocks will stick together one by one and move in a form of combined mass.

Time required to cover a distance ' L ' by first block $=\frac{L}{V}$

Now first and second block will stick together and move with $\frac{v}{2}$ velocity (by applying conservation of momentum) and combined system will take time $\frac{L}{v / 2}=\frac{2 L}{v}$ to reach up to block third.

Now these three blocks will move with velocity $\frac{v}{3}$ and combined system will take time $\frac{L}{v / 3}=\frac{3 L}{v}$ to reach up to the block fourth.
So, total time $=$

$$
\frac{L}{v}+\frac{2 L}{v}+\frac{3 L}{v}+\ldots \frac{(n-1) L}{v}=\frac{n(n-1) L}{2 v}
$$

and velocity of combined system having n blocks as $\frac{v}{n}$.
16. Answer (A)

$$
\begin{aligned}
r & =1.5 \times 10^{8} \mathrm{~km}, T=1 \text { year } \\
& =3.14 \times 10^{7} \mathrm{~s}, m=6 \times 10^{24} \mathrm{~kg}
\end{aligned}
$$

Linear velocity, $v=r \omega$

$$
=\frac{1.5 \times 10^{11} \times 2 \pi}{3.14 \times 10^{7}}=3 \times 10^{4} \mathrm{~m} / \mathrm{s}
$$

Work-energy theorem,

$$
\begin{aligned}
W & =K_{p}-K_{l}=0-\frac{1}{2} m v^{2} \\
& =-\frac{6}{2} \times 10^{24} \times 9 \times 10^{8} \\
& =-\frac{54}{2} \times 10^{32} \mathrm{~J} \\
& =-\frac{54}{x} \times 10^{32} \mathrm{~J} \Rightarrow x=2
\end{aligned}
$$

17. Answer (B, C)

From basic photoelectric equation, we can get work function.
18. Answer (A)

Number of electrons emitted
$=\frac{J}{e}=\frac{4.8 \times 10^{-3}}{e}=3 \times 10^{16}$
Efficiency $\eta=\frac{\text { no. of electrons emitted }}{\text { no. of photons incident }}$

$$
=\frac{J E_{1}}{e}=\frac{3 \times 10^{16}(h c)}{3000 \times 10^{-10}}=0.0198
$$

19. Answer (A, B)

Potential gradient,
$K=\frac{V_{A B}}{L}=\frac{I \times R}{L}=\frac{4 \text { volt }}{(15+10) \mathrm{ohm}} \times \frac{10 \mathrm{ohm}}{50 \mathrm{~cm}}$

$$
=\frac{40}{25 \times 50} \mathrm{volt} / \mathrm{cm}
$$

$$
E_{2}=K I=\frac{40}{25 \times 50} \times 31.25=1 \mathrm{volt}
$$

20. Answer (C)

When key K_{2} is open and K_{1} is closed: In this case R_{1} is short circuited and e.m.f E_{2} is balanced against potentiometer
i.e., $E_{2}=\left[\frac{4}{10} \times \frac{10}{50}\right] \times 1=\frac{1 \times 10 \times 50}{4 \times 10}=12.5 \mathrm{~cm}$

PART - II : CHEMISTRY

21. Answer (6)

For a first order reaction
$t=\frac{2.303}{k} \log \frac{[A]_{0}}{[A]_{t}}$
$=\frac{2.303}{7.67 \times 10^{-2}} \log \frac{1.20}{0.75}$
$=\frac{2.303 \times 0.2}{7.67 \times 10^{-2}} \simeq 6 \mathrm{sec}$
22. Answer (3)

(Melamine)

Three lone pairs of electrons are involved in resonance.
23. Answer (4)

Moles of $(X)=\frac{12 \times 10^{-3}}{80}=1.5 \times 10^{-4}$
Moles of $\mathrm{H}_{2}=\frac{10.08}{22400}=4.5 \times 10^{-4}$
Thus (X) has three double bonds. It is
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
24. Answer (6)

Compounds other than, Salicylaldehyde and Pentan-2-one give positive Fehling solution test.
25. Answer (9)

Mass of mixture of Al and $\mathrm{Al}_{2} \mathrm{O}_{3}=0.742 \mathrm{~g}$
$2 \mathrm{Al}+2 \mathrm{NaOH}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+3 \mathrm{H}_{2}$
$\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{O}$
Volume of H_{2} gas at STP $=840 \mathrm{~mL}$
No. of moles of $\mathrm{H}_{2}=\frac{840}{22400}=0.0375$
No. of moles of $\mathrm{Al}=\frac{2}{3} \times$ No. of moles of H_{2}

$$
=\frac{2}{3} \times 0.0375=0.025
$$

Mass of aluminium $=0.025 \times 27=0.675 \mathrm{~g}$
$\%$ of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the mixture $=\left(\frac{0.742-0.675}{0.742}\right)^{100}$

$$
=9 \%
$$

26. Answer (3)

Glucose, Mannose and Fructose give the same osazone with excess of phenyl hydrazine.
27. Answer (8)
$\underset{Z=100}{A} \xrightarrow{-e} \underset{Z_{1}=101}{B} \xrightarrow{-\alpha} \underset{Z_{2}=97}{C}$
$\frac{Z_{1}+Z_{2}}{25}=\frac{101+97}{25}=\frac{198}{25} \simeq 8$
28. Answer (5)
$A \longrightarrow B$
$[A]_{t}=a-b t$
Pressure , p of gas A is given by
$p=(a-b t) R T$
$R=-\frac{d p}{d t}=b R T=0.4 \times \frac{1}{12} \times 300=10 \mathrm{~atm} \mathrm{sec}^{-1}$
29. Answer (A, B, C)
(A) For an ideal monoatomic gas, $\gamma=\frac{5}{3}$

Adiabatic equation for expansion of ideal monoatomic gas

$$
\begin{aligned}
& T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} \\
& \frac{V_{1}}{V_{2}}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{1}{\gamma-1}}=\left(\frac{T_{2}}{T_{1}}\right)^{3 / 2}
\end{aligned}
$$

(B) At low pressures attractive forces dominate and ' b ' is negligible

$$
\mathrm{Z}=1-\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}} \mathrm{bRT}}
$$

(C) A gas can be liquified below critical temperature just by increasing pressure
(D) van der Waal's constant ' a ' is a measure of intermolecular forces of attraction
30. Answer (A, B)

Both nitrate ion $\left(\mathrm{NO}_{3}^{-}\right)$and bromide ion $\left(\mathrm{Br}^{-}\right)$ give brown fumes with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
31. Answer (A, B, C, D)

By all the above processes coagulation can be done.
32. Answer (B, C)

33. Answer (A, B, D)
(A)

(B)

(D)

(Correct product)
34. Answer (A, B, C)

Sulphonic acid group is stronger than carboxylic acid group.
35. Answer (A, B, D)

Gel has liquid dispersed phase and solid dispersion medium
36. Answer (A, C)

Lactose $\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}$Glucose + Galactose
37. Answer (A)
$\Delta \mathrm{H}=-1575-\frac{3}{2} \times 241.8+2021$
$=83.3 \mathrm{~kJ} / \mathrm{mol}$
$\therefore \Delta \mathrm{H}($ per kg $)=83.3 \times \frac{1000}{172}$
$=484.3 \mathrm{~kJ}$
38. Answer (A)
$\Delta S=130.5+\frac{3}{2} \times 188.6-194$
$=219.4 \mathrm{~J} / \mathrm{K}$
39. Answer (C)

40. Answer (B)

$$
\left.\mathrm{FeSO}_{4}+\mathrm{NO}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{(\mathrm{D})}{\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right.} \mathrm{NO}\right] \mathrm{SO}_{4}
$$

PART - III : MATHEMATICS

41. Answer (6)

$$
\begin{aligned}
& \begin{array}{l}
S=\sum_{r=1}^{50} \tan ^{-1}\left(\frac{1+r+r^{2}-\left(1-r+r^{2}\right)}{1+\left(1+r+r^{2}\right)\left(1-r+r^{2}\right)}\right) \\
\quad=\sum_{r=1}^{50} \tan ^{-1}\left(1+r+r^{2}\right)-\tan ^{-1}\left(1-r+r^{2}\right)
\end{array} \\
& =\tan ^{-1}\left(1+50+50^{2}\right)-\tan ^{-1} 1=\tan ^{-1}\left(\frac{2550}{2552}\right) \\
& \Rightarrow k=6 .
\end{aligned}
$$

42. Answer (5)

If there is a subset with 6 elements then it has 15 pairs, each with sum at least $1+2=3$ and at most $8+9=17$. There are only 15 numbers at least 3 and at most 17, so each must be realised.
But the only pair with sum 3 is 1,2 and with sum 17 is 8,9 and then $1+9=8+2$, so six elements is impossible.
Also $\{1,2,3,5,8\}$ has five elements and all pair with a different sum.
43. Answer (3)

The circle through points of intersections of three distinct tangents to parabola, taken pairwise always passes through the focus of the parabola.
44. Answer (5)
$f(0)=0 ; x=0, y=0$
$f\left(x^{3}\right)=x f\left(x^{2}\right) ; y=0$
$f\left(y^{3}\right)=y f\left(y^{2}\right)$
$f\left(x^{3}\right)+f\left(y^{3}\right)=x f\left(x^{2}\right)+y f\left(y^{2}\right)=f\left(x^{3}+y^{3}\right)$
$\Rightarrow f(x)+f(y)=f(x+y)$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=5 \Rightarrow f^{\prime}(x)=5$.
45. Answer (0)
$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})=(\vec{b} \cdot \vec{c})(\vec{a} \cdot \vec{b})-\vec{a} \cdot \vec{c}$
$(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})=(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{c})-\vec{a} \cdot \vec{b}$
$(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=(\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{c})-\vec{b} \cdot \vec{c}$
given that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$
$\Rightarrow(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})=3 \Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=0$
$\Rightarrow \lambda=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})+(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a})+(\vec{c} \cdot \vec{a})(\vec{a} \cdot \vec{b})$ $-\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}-\vec{c} \cdot \vec{a}$
$\Rightarrow \lambda=(\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c})+(\vec{b} \cdot \vec{c})(\vec{c} \cdot \vec{a})+(\vec{c} \cdot \vec{a})(\vec{a} \cdot \vec{b})$
$\Rightarrow \lambda \leq 0($ since $x+y+z=0, x y+y z+x z \leq 0)$
$\lambda_{\max }=0$ only when $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{c}=0$
46. Answer (3)

$f\left(1^{+}\right)=f(1)=\frac{\pi}{4}$ and $f\left(1^{-}\right)=\frac{\pi}{4}$
also, $f\left(-1^{+}\right)=\frac{\pi}{4}, f\left(-1^{-}\right)=f(-1)=\frac{3 \pi}{4}$
$\Rightarrow f(x)$ is continuous at $x=0,1$ but discontinuous at $x=-1$.
domain of $f^{\prime}(x)$ does not contains $x=-1,0,1$.
47. Answer (1)
$\sin \sin ^{-1}[x]=[x]$ if $-1 \leq[x] \leq 1$
i.e. $-1 \leq x<2$
$\cos ^{-1} \cos x=x$ if $0 \leq x \leq \pi$
\Rightarrow Given equation becomes $[x]+x=1$ where $0 \leq x<2$
$[x]=1-x \quad 0 \leq x<2$

No solution except $x=1$.
Number of solutions is one.
48. Answer (8)
$(Y+2 \sqrt{2})^{2}=4(X+1)+4$

Let chord is $Y=m X+c$
$Y^{2}+4 \sqrt{2} Y\left(\frac{Y-m X}{c}\right)-4 \times\left(\frac{Y-m X}{c}\right)=0$
Coefficient of $X^{2}+$ coefficient of $Y^{2}=0$
$1+\frac{4 \sqrt{2}}{c}+\frac{4 m}{c}=0$
$c+4 \sqrt{2}+4 m=0$
$Y=m X-4 \sqrt{2}-4 m$
$(Y+4 \sqrt{2})-m(X-4)=0$
$X=4, Y=-4 \sqrt{2}$
$x=5, y=2 \sqrt{2}-4 \sqrt{2}$.
49. Answer (C, D)
b is H.M. of a and c
$b<\frac{a+c}{2}$
$b-a<c-b$
$a-b>b-c$
$\frac{1}{a-b}-\frac{1}{b-c}<0$
also $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
so $b c(1-a), a c(1-b), a b(1-c)$ are in A.P.
50. Answer (A, B)

Take any four numbers

Ex: 5, 1, 3, 3

They can be arranged only in one way such that each number is not smaller than the preceding i.e. $1,3,3,5$.

Probability
$=\frac{\left({ }^{6} C_{1} \cdot 1+{ }^{6} C_{2} \cdot 3+{ }^{6} C_{3} \cdot 3+{ }^{6} C_{4} \cdot 1\right)}{6^{4}}=\frac{7}{72}$
51. Answer (B, D)

Area $A=$ area of $P Q R S$

$$
\begin{aligned}
& =(b \sin \theta+a \cos \theta)(a \sin \theta+b \cos \theta) \\
& =a b+\left(a^{2}+b^{2}\right) \sin \theta \cos \theta \\
& =a b+\frac{a^{2}+b^{2}}{2} \sin 2 \theta
\end{aligned}
$$

A is maximum when $\sin 2 \theta=1 \Rightarrow \theta=\frac{\pi}{4}$
$A_{\max }=a b+\frac{a^{2}+b^{2}}{2}=\frac{1}{2}(a+b)^{2}$
52. Answer (A, B, D)

$A R=R B=\frac{b}{4 \cos 15^{\circ}}$
$A Q=\frac{2 b}{4 \cos 15^{\circ}}, B P=\frac{\sqrt{3} b}{4 \cos 15^{\circ}}$
$\Rightarrow R Q^{2}=\frac{7 b^{2}}{16 \cos ^{2} 15^{\circ}}=R P^{2}$
$\Rightarrow R P=R Q$ and $\left(\frac{R Q}{b}\right)^{2}=\frac{7}{4 \sqrt{3}+8}<1$.

Hence $R Q<b$ and quadrilateral $P C Q R$ is a square hence $P Q=R C$.
53. Answer (B, D)
$\lim _{x \rightarrow \infty} 4 x\left(\frac{\pi}{4}-\tan ^{-1} \frac{x+1}{x+2}\right)=\lim _{x \rightarrow \infty} 4 x\left(\tan ^{-1} \frac{1-\frac{x+1}{x+2}}{1+\frac{x+1}{x+2}}\right)$
$=\lim _{x \rightarrow \infty} 4 x \frac{\tan ^{-1}\left(\frac{1}{2 x+3}\right)}{\left(\frac{1}{2 x+3}\right)} \times \frac{1}{2 x+3}=2$

$$
\begin{aligned}
& y^{2}+4 y+5=2 \\
& y=-1,-3
\end{aligned}
$$

54. Answer (B, D)

$$
\begin{aligned}
& f(x)=\int_{0}^{1} 5+(1-t) d t+\int_{1}^{x} 5-(1-t) d t \\
& \Rightarrow f(x)= \begin{cases}5 x+1, & x \leq 2 \\
\frac{x^{2}}{2}+4 x+1, & x>2\end{cases}
\end{aligned}
$$

55. Answer (B, C)

$$
\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|
$$

$$
=\left|z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}\right|
$$

$$
\left|\left(z_{1}-z_{2}\right)\left(z_{1}+z_{2}\right)\right|=\left|z_{1}-z_{2}\right|\left|z_{1}-z_{2}\right|
$$

$$
\Rightarrow\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|
$$

$$
\left(z_{1}+z_{2}\right)\left(\bar{z}_{1}+\bar{z}_{2}\right)=\left(z_{1}-z_{2}\right)\left(\bar{z}_{1}-\bar{z}_{2}\right)
$$

$$
\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}
$$

$\Rightarrow \quad z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}=0$
$\Rightarrow \frac{z_{1}}{z_{2}}=-\frac{\bar{z}_{1}}{\bar{z}_{2}}$
$\Rightarrow \frac{z_{1}}{z_{2}}$ is purely imaginary and $\left|\arg z_{1}-\arg z_{2}\right|$

$$
=\frac{\pi}{2}
$$

56. Answer (B, D)

$$
g^{\prime}(x)=\frac{(x-1)\left(x^{3}-3 x^{2}+5 x+1\right) \cdot e^{x}}{\left(x^{2}+1\right)^{3}}
$$

Now, ' $x^{3}-3 x^{2}+5 x+1$ ' is strictly increasing and has a root in $(-1,0)$
57. Answer (A)

SP.S'P $=a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta=a^{2}+\cos ^{2} \theta\left(b^{2}-a^{2}\right)$
\Rightarrow Maximum of $S P \cdot S^{\prime} P=a^{2}$ at $\theta=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ then point P is $(0, \pm 1)$.
58. Answer (A)

Curve X is $-\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$b e=1$
$a^{2}+b^{2}=1$
$\Rightarrow \frac{a^{2}}{b}=2$
$b^{2}+2 b-1=0$
$b=\sqrt{2}-1, a^{2}=2(\sqrt{2}-1)$
$\frac{-x^{2}}{2(\sqrt{2}-1)}+\frac{y^{2}}{(\sqrt{2}-1)^{2}}=1$
59. Answer (A)
$A=$ area of $\triangle O R S=\frac{1}{2} \sqrt{|\vec{a}|^{2}+|\vec{c}|^{2}} \frac{\vec{b} \mid}{2} \cos \theta$
$\sin \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\dot{b}|}$
60. Answer (B)

$$
\frac{1}{2} \sqrt{|\vec{a}|^{2}+|\vec{c}|^{2}} \times h=\frac{|\vec{a} \times \vec{c}|}{2}
$$

