Date: 04/06/2023 Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456 Questions & Answers Time: 3 hrs. Max. Marks: 180 JEE (Advanced)-2023 (Paper-1) ### **PART-I: PHYSICS** **SECTION 1 (Maximum Marks: 12)** - This section contains THREE (03) questions. - Each guestion has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s). - For each question, choose the option(s) corresponding to (all) the correct answer(s). - Answer to each question will be evaluated according to the following marking scheme: Full Marks +4 **ONLY** if (all) the correct option(s) is(are) chosen; Partial Marks +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks + 2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct: Partial Marks +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option; Zero Marks If none of the options is chosen (i.e. the question is unanswered); -2 In all other cases. Negative Marks A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3h from the ground, as shown in the figure. A spherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity 2020 \vec{v} and reaches a maximum height h_1 . The acceleration due to gravity is g and the coefficient of restitution of the ground is $1/\sqrt{3}$. Which of the following statement(s) is(are) correct? (A) $\vec{u}_0 = \sqrt{2gh}\hat{x}$ (B) $\vec{v} = \sqrt{2gh}(\hat{x} - \hat{z})$ (C) $\theta = 60^{\circ}$ (D) $d / h_1 = 2\sqrt{3}$ #### Answer (A, C, D) 2. A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{min} = 30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct? - (A) The blue light is polarized in the plane of incidence. - (B) The angle of the prism is 45°. - (C) The refractive index of the material of the prism for red light is $\sqrt{2}$. - (D) The angle of refraction for blue light in air at the exit plane of the prism is 60°. #### Answer (A, C, D) # Aakashians Shine as Champions in JEE Advanced 2022 2021 2020 St. CALL ALER LANGOLARICHWAL 4 Year Classroom 2022 2021 2020 In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time $t = t_0$. Which of the following statement(s) is(are) correct? [Given : $e^{-1} = 0.36$] - (A) The value of the resistance R is 3 Ω . - (B) For $t < t_0$, the value of current I_1 is 2 A. - (C) At $t = t_0 + 7.2 \,\mu\text{s}$, the current in the capacitor is 0.6 A. - (D) For $t \to \infty$, the charge on the capacitor is 12 μ C. #### Answer (A, B, C, D) #### **SECTION 2 (Maximum Marks: 12)** - This section contains FOUR (04) questions. - Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer. - For each question, choose the option corresponding to the correct answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks If **ONLY** the correct option is chosen; Zero Marks If none of the options is chosen (i.e. the question is unanswered); 0 Negative Marks : -1 In all other cases. A bar of mass M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with $5.00 \, \mathrm{ms}^{-1}$ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted **Aakashians Shine as Champions in JEE Advanced** end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct? (A) $$\omega = 6.98 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ ms}^{-1}$$ (B) $$\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ ms}^{-1}$$ (C) $$\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 10.0 \text{ ms}^{-1}$$ (D) $$\omega = 6.80 \text{ rad s}^{-1} \text{ and } v = 4.10 \text{ ms}^{-1}$$ #### Answer (A) **5.** A container has a base of 50 cm × 5 cm and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area 50 cm × 50 cm. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of 250 cm³ s⁻¹. What is the value of the capacitance of the container after 10 seconds? [Given: Permittivity of free space $\varepsilon_0 = 9 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible] (A) 27 pF (B) 63 pF (C) 81 pF (D) 135 pF #### Answer (B) - 6. One mole of an ideal gas expands adiabatically from an initial state (T_A, V_0) to final state $(T_F, 5V_0)$. Another mole of the same gas expands isothermally from a different initial state (T_B, V_0) to the same final state $(T_F, 5V_0)$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ . What is the ratio T_A/T_B ? - (A) $5^{\gamma-1}$ (B) $5^{1-\gamma}$ (C) 5⁷ (D) $5^{1+\gamma}$ #### Answer (A) - 7. Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_P and h_Q , respectively, where $h_P = \frac{R}{3}$. The accelerations of P and Q due to Earth's gravity are g_P and g_Q : respectively. If $\frac{g_P}{g_Q} = \frac{36}{25}$, what is the value of h_Q ? - (A) $\frac{3R}{5}$ - (B) $\frac{R}{6}$ - (C) $\frac{6R}{5}$ - (D) $\frac{5R}{5}$ #### Answer (A) #### **SECTION 3 (Maximum Marks: 24)** - This section contains SIX (06) questions. - The answer to each question is a **NON-NEGATIVE INTEGER**. - For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If **ONLY** the correct integer is entered; Zero Marks : 0 In all other cases. 8. A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n = 4 to level n = 3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1.95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is ______. [Given hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum] #### Answer (3) An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm and 24 cm, respectively. The distance between L and M_2 is 20 cm. A point object S is placed at the mid-point between L and L and L on the axis. When the distance between L and L and L on the images coincides with image L on the images coincides with L and L on the image L on the images coincides with L and L on the image #### Answer (80 or 150 or 220) 10. In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n%. The value of n is #### Answer (1) 11. A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas ($\gamma = 5/3$) and one mole of an ideal diatomic gas ($\gamma = 7/5$). Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure. The change in its internal energy is ______ Joule. #### **Answer (121)** **12.** A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s⁻¹, the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s⁻¹. #### Answer (40) **13.** Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass, as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad⁻¹. The angular frequency of the oscillations in $n \times 10^{-3}$ rad s⁻¹. The value of n is #### Answer (10) #### **SECTION 4 (Maximum Marks: 12)** 20 gm - This section contains FOUR (04) Matching List Sets. - Each set has ONE Multiple Choice Question. - Each set has TWO lists: List-I and List-II. - List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). 30 gm - FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases. **14.** List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option. #### List-I - (P) $^{238}_{92}U \rightarrow ^{234}_{91}Pa$ - (Q) $^{214}_{82}Pb \rightarrow ^{210}_{82}Pb$ - (R) $^{210}_{81}TI \rightarrow ^{206}_{82}Pb$ - (S) $^{228}_{91}$ Pa $\rightarrow ^{224}_{88}$ Ra - (A) $P \rightarrow 4$, $Q \rightarrow 3$, $R \rightarrow 2$, $S \rightarrow 1$ - (C) $P \rightarrow 5$, $Q \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 4$ #### Answer (A) #### List-II - (1) one α particle and one β^{+} particle - (2) three β particles and one α particle - (3) two β^- particles and one α particle - (4) one α particle and one β^- particle - (5) one α particle and two β^{+} particles - (B) $P \rightarrow 4$, $Q \rightarrow 1$, $R \rightarrow 2$, $S \rightarrow 5$ - (D) $P \rightarrow 5$, $Q \rightarrow 1$, $R \rightarrow 3$, $S \rightarrow 2$ ## Aakashians Shine as Champions in **JEE Advanced** UZZ **15.** Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option. [Given: Wien's constant as 2.9×10^{-3} m-K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V-m] #### List-I - (P) 2000 K - (Q) 3000 K - (R) 5000 K - (S) 10000 K - (A) $P \rightarrow 3$, $Q \rightarrow 5$, $R \rightarrow 2$, $S \rightarrow 3$ - (C) $P \rightarrow 3$, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 1$ #### List-II - (1) The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV. - (2) The radiation at peak wavelength is visible to human eye. - (3) The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction. - (4) The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K. - (5) The radiation at peak emission wavelength can be used to image human bones. - (B) $P \rightarrow 3$, $Q \rightarrow 2$, $R \rightarrow 4$, $S \rightarrow 1$ - (D) $P \rightarrow 1$, $Q \rightarrow 2$, $R \rightarrow 5$, $S \rightarrow 3$ #### Answer (C) **16.** A series LCR circuit is connected to a 45 $\sin(\omega t)$ Volt source. The resonant angular frequency of the circuit is 10^5 rad s⁻¹ and current amplitude at resonance is I_0 . When the angular frequency of the source is $\omega = 8 \times 10^4$ rad s⁻¹, the current amplitude in the circuit is $0.05 I_0$. If L = 50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option. | List-I | List-II | |---------------------------------------------------------|----------| | (P) I ₀ in mA | (1) 44.4 | | (Q) The quality factor of the circuit | (2) 18 | | (R) The bandwidth of the circuit in rad s ⁻¹ | (3) 400 | | (S) The peak power dissipated at resonance in Watt | (4) 2250 | | | (5) 500 | # Aakashians Shine as Champions in **JEE Advanced** 2020 ___ 2021 - (A) $P \rightarrow 2$, $Q \rightarrow 3$, $R \rightarrow 5$, $S \rightarrow 1$ - (B) $P \rightarrow 3$, $Q \rightarrow 1$, $R \rightarrow 4$, $S \rightarrow 2$ - (C) $P \rightarrow 4$, $Q \rightarrow 5$, $R \rightarrow 3$, $S \rightarrow 1$ - (D) $P \rightarrow 4$, $Q \rightarrow 2$, $R \rightarrow 1$, $S \rightarrow 5$ #### Answer (B) 17. A thin conducting rod MN of mass 20 gm, length 25 cm and resistance 10Ω is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4$ T directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option. [Given: The acceleration due to gravity $g = 10 \text{ m s}^{-2}$ and $e^{-1} = 0.4$] | List-I | List-II | |------------------------------------------------------------------------|----------| | (P) At $t = 0.2$ s, the magnitude of the induced emf in Volt | (1) 0.07 | | (Q) At $t = 0.2$ s, the magnitude of the magnetic force in Newton | (2) 0.14 | | (R) At $t = 0.2$ s, the power dissipated as heat in Watt | (3) 1.20 | | (S) The magnitude of terminal velocity of the rod in m s ⁻¹ | (4) 0.12 | | | (5) 2.00 | (A) $P \rightarrow 5$, $Q \rightarrow 2$, $R \rightarrow 3$, $S \rightarrow 1$ (B) $P \rightarrow 3$, $Q \rightarrow 1$, $R \rightarrow 4$, $S \rightarrow 5$ (C) $P \rightarrow 4$, $Q \rightarrow 3$, $R \rightarrow 1$, $S \rightarrow 2$ (D) $P \rightarrow 3$, $Q \rightarrow 4$, $R \rightarrow 2$, $S \rightarrow 5$ #### Answer (D) ## PART-II: CHEMISTRY #### **SECTION 1 (Maximum Marks: 12)** - This section contains THREE (03) questions. - Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s). - For each question, choose the option(s) corresponding to (all) the correct answer(s). - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen; Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : + 2 If three or more options are correct but ONLY two options are chosen, both of which are correct; Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -2 In all other cases. - The correct statement(s) related to processes involved in the extraction of metals is(are) - (A) Roasting of Malachite produces Cuprite - (B) Calcination of Calamine produces Zincite - (C) Copper pyrites is heated with silica in a reverberatory furnace to remove iron - (D) Impure silver is treated with aqueous KCN in the presence of oxygen followed by reduction with zinc metal #### Answer (B, C, D) 2. In the following reactions, P, Q, R and S are the major products. $$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CN} & \xrightarrow{\text{(i) PhMgBr, then H}_3\text{O}^{\oplus}} \\ \hline \text{Ph-H} & + \text{CH}_3^{\text{CCI}} & \xrightarrow{\text{(ii) anhyd. AlCI}_3} \\ \hline \text{CH}_3\text{CH}_2^{\text{CCI}} & \xrightarrow{\text{(ii) PhMgBr, then H}_2\text{O}} \\ \hline \\ \text{CH}_3\text{CH}_2^{\text{CCI}} & \xrightarrow{\text{(ii) } \frac{1}{2} \text{ (PhCH}_2)_2\text{Cd}} \\ \hline \text{(ii) PhMgBr, then H}_2\text{O} \\ \hline \\ \text{(ii) PhMgBr, then H}_2\text{O} \\ \hline \\ \text{(ii) PhMgBr, then H}_2\text{O} \\ \hline \\ \text{(iii) CrO}_3, \text{ dil. H}_2\text{SO}_4 \\ \hline \\ \text{(iii) HCN}_{\text{(iv) H}_2\text{SO}_4, \Delta} \\ \hline \end{array} \right. \quad \textbf{S}$$ # Aakashians Shine as Champions in **JEE Advanced** The correct statement(s) about **P**, **Q**, **R** and **S** is(are) - (A) Both **P** and **Q** have asymmetric carbon(s) - (B) Both **Q** and **R** have asymmetric carbon(s) - (C) Both **P** and **R** have asymmetric carbon(s) - (D) P has asymmetric carbon(s), S does not have any asymmetric carbon #### Answer (C, D) 3. Consider the following reaction scheme and choose the correct option(s) for the major products Q, R and S. Styrene $$\frac{\text{(i) } B_2H_6}{\text{(ii) NaOH, } H_2O_2, H_2O} \quad \textbf{P} \quad \frac{\text{(i) } CrO_3, H_2SO_4}{\text{(ii) } Cl_2, \text{ Red phosphorus}} \quad \textbf{Q}$$ $$\text{(iii) } H_2O$$ $$P \xrightarrow{\text{(i) SOCI}_2} R \xrightarrow{\text{conc. H}_2SO_4} S$$ $$\text{(iii) H}_3O^+, \Delta$$ (A) $$Q$$ R S Aakashians Shine as Champions in **JEE Advanced** #### Answer (B) #### **SECTION 2 (Maximum Marks: 12)** - This section contains FOUR (04) questions. - Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer. - For each question, choose the option corresponding to the correct answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 If **ONLY** the correct option is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases. 4. In the scheme given below, X and Y, respectively, are (A) CrO_4^{2-} and Br_2 (B) MnO_4^{2-} and \rm Cl_2 (C) MnO_4^- and Cl_2 (D) MnSO₄ and HOCl #### Answer (C) **5.** Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is $[\Lambda_m$ = molar conductivity $\Lambda_{\rm m}^{\circ}$ = limiting molar conductivity c = molar concentration K_a = dissociation constant of HX] (A) $$K_a \Lambda_m^{\circ}$$ (B) $$K_a \Lambda_m^{\circ} / 2$$ (C) 2 Ka $$\Lambda_{\rm m}^{\circ}$$ (D) $$1/(K_a\Lambda_m^\circ)$$ #### Answer (A) 6. On decreasing the pH from 7 to 2, the solubility of a sparingly soluble salt (MX) of a weak acid (HX) increased from 10^{-4} mol L⁻¹ to 10^{-3} mol L⁻¹. The pK_a of HX is #### Answer (B) 7. In the given reaction scheme, **P** is a phenyl alkyl ether, **Q** is an aromatic compound; **R** and **S** are the major products. $$P \xrightarrow{HI} Q \xrightarrow{\text{(ii) NaOH}} R \xrightarrow{\text{(ii) (CH}_3CO)_2O} S$$ The correct statement about S is - (A) It primarily inhibits noradrenaline degrading enzymes - (B) It inhibits the synthesis of prostaglandin - (C) It is a narcotic drug - (D) It is ortho-acetylbenzoic acid #### Answer (B) #### **SECTION 3 (Maximum Marks: 24)** - This section contains SIX (06) questions. - The answer to each question is a **NON-NEGATIVE INTEGER**. - For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If **ONLY** the correct integer is entered; Zero Marks : 0 In all other cases. 2020 The stoichiometric reaction of 516 g of dimethyldichlorosilane with water results in a tetrameric cyclic product X in 75% yield. The weight (in g) of **X** obtained is____. [Use, molar mass (g mol^{-1}): H = 1, C = 12, O = 16, Si = 28, Cl = 35.5] #### **Answer (222)** A gas has a compressibility factor of 0.5 and a molar volume of 0.4 dm³ mol⁻¹ at a temperature of 800 K and pressure x atm. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be \mathbf{y} dm³ mol⁻¹. The value of \mathbf{x}/\mathbf{y} is . [Use: Gas constant, $R = 8 \times 10^{-2} L$ atm K^{-1} mol⁻¹] #### Answer (100) **10.** The plot of log k_f versus $\frac{1}{T}$ for a reversible reaction $A(g) \rightleftharpoons P(g)$ is shown. Pre-exponential factors for the forward and backward reactions are 10¹⁵ s⁻¹ and 10¹¹ s⁻¹, respectively. If the value of log K for the reaction at 500 K is 6, the value of |logk_b| at 250 K is_____. [K = equilibrium constant of the reaction, k_f = rate constant of forward reaction, k_b = rate constant of backward reaction] #### Answer (5) 2020 11. One mole of an ideal monoatomic gas undergoes two reversible processes (A → B and B → C) as shown in the given figure: $A \to B$ is an adiabatic process. If the total heat absorbed in the entire process (A \to B and B \to C) is RT₂ In 10, the value of 2 logV₃ is_____. [Use, molar heat capacity of the gas at constant pressure, $C_{p,m} = \frac{5}{2} R$] #### Answer (7) **12.** In a one-litre flask, 6 moles of A undergoes the reaction $A(g) \rightleftharpoons P(g)$. The progress of product formation at two temperatures (in Kelvin), T_1 and T_2 , is shown in the figure: If $T_1 = 2T_2$ and $\left(\Delta G_2^{\ominus} - \Delta G_1^{\ominus}\right) = RT_2 \ln x$, then the value of x is_____. $[\,\Delta G_1^\ominus\,\,\text{and}\,\,\Delta G_2^\ominus\,\,\text{are standard Gibb's free energy change for the reaction at temperatures}\,\,T_1\,\text{and}\,\,T_2,\,\text{respectively.}]$ #### Answer (8) **13.** The total number of sp^2 hybridised carbon atoms in the major product **P** (a non-heterocyclic compound) of the following reaction is _____. #### Answer (28) #### **SECTION 4 (Maximum Marks : 12)** - This section contains FOUR (04) Matching List Sets. - Each set has **ONE** Multiple Choice Question. - Each set has TWO lists: List-I and List-II. - List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). - FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question. - Answer to each question will be evaluated <u>according to the following marking scheme:</u> Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases. **14.** Match the reactions (in the given stoichiometry of the reactants) in List-I with one of their products given in List-II and choose the correct option. | | List-I | | List-II | |-----|---------------------------------------------------------------------------|-----|----------------------------------------| | (P) | $P_2O_3 + 3H_2O \rightarrow$ | (1) | P(O)(OCH ₃)Cl ₂ | | (Q) | P ₄ + 3NaOH + 3H ₂ O → | (2) | H ₃ PO ₃ | | (R) | PCI ₅ + CH ₃ COOH → | (3) | PH ₃ | | (S) | H ₃ PO ₂ + 2H ₂ O + 4AgNO ₃ → | (4) | POCl ₃ | | | | (5) | H ₃ PO ₄ | (A) $$P \rightarrow 2$$; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 5$ (B) $$P \rightarrow 3$$; $Q \rightarrow 5$; $R \rightarrow 4$; $S \rightarrow 2$ (C) $$P \rightarrow 5$$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 3$ (D) $$P \rightarrow 2$$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 5$ #### Answer (D) **15.** Match the electronic configurations in List-I with appropriate metal complex ions in List-II and choose the correct option. [Atomic Number: Fe = 26, Mn = 25, Co = 27] | | List-l | | List-II | |-----|-----------------------|-----|----------------------------------------------------| | (P) | $t_{2g}^{6}e_{g}^{0}$ | (1) | [Fe(H ₂ O) ₆] ²⁺ | | (Q) | $t_{2g}^3 e_g^2$ | (2) | [Mn(H ₂ O) ₆] ²⁺ | | (R) | $e^2t_2^3$ | (3) | [Co(NH ₃) ₆] ³⁺ | | (S) | $t_{2g}^{4}e_{g}^{2}$ | (4) | [FeCl ₄] ⁻ | | | | (5) | [CoCl ₄] ²⁻ | - (A) $P \rightarrow 1$; $Q \rightarrow 4$; $R \rightarrow 2$; $S \rightarrow 3$ - (B) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 5$ - (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 1$ - (D) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$ #### Answer (D) 16. Match the reactions in List-I with the features of their products in List-II and choose the correct option. | | List-l | List-II | |-----|------------------------------------------------------------------------------------------------------------------|-----------------------------------| | (P) | (-)-1-Bromo-2-ethylpentane $\xrightarrow{\text{aq. NaOH}}$ $S_N^2 \text{ reaction}$ | (1) Inversion of configuration | | (Q) | $(-)-2-Bromopentane \xrightarrow{\text{aq. NaOH}} S_N \text{ 2 reaction} \rightarrow$ | (2) Retention of configuration | | (R) | (-)-3-Bromo-3-methylhexane $\xrightarrow{\text{aq. NaOH}}$ $\xrightarrow{\text{S}_{\text{N}} \text{1 reaction}}$ | (3) Mixture of enantiomers | | (S) | Me H Me Br (single enantiomer) | (4) Mixture of structural isomers | | | | (5) Mixture of diastereomers | - (A) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 3$ - (C) $P \rightarrow 1$; $Q \rightarrow 2$; $R \rightarrow 5$; $S \rightarrow 4$ - (B) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 3$; $S \rightarrow 5$ - (D) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 3$; $S \rightarrow 5$ #### Answer (B) **17.** The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match List-II with List-II and choose the correct option. | List-I | List-II | |------------------------------|------------------------------------------------------------------------------------------------------| | (P) Etard reaction | (1) Acetophenone — Zn-Hg,HCl → | | (Q) Gattermann reaction | (2) Toluene $\xrightarrow{(i) \text{KMnO}_4, \text{KOH}, \Delta}$ $\xrightarrow{(ii) \text{SOCl}_2}$ | | (R) Gattermann-Koch reaction | (3) Benzene CH₃Cl anhyd. AlCl₃ → | | (S) Rosenmund reduction | (4) Aniline $\frac{\text{NaNO}_2/\text{HCI}}{273-278 \text{ K}} \rightarrow$ | | | (5) Phenol $\xrightarrow{Zn,\Delta}$ | (A) $P \rightarrow 2$; $Q \rightarrow 4$; $R \rightarrow 1$; $S \rightarrow 3$ (B) P \rightarrow 1; Q \rightarrow 3; R \rightarrow 5; S \rightarrow 2 (C) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 1$; $S \rightarrow 4$ (D) $P \rightarrow 3$; $Q \rightarrow 4$; $R \rightarrow 5$; $S \rightarrow 2$ Answer (D) Aakashians Shine as Champions in **JEE Advanced** 2020 # **PART-III: MATHEMATICS** #### **SECTION 1 (Maximum Marks: 12)** - This section contains THREE (03) questions. - Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s). - For each question, choose the option(s) corresponding to (all) the correct answer(s). - Answer to each question will be evaluated <u>according to the following marking scheme</u>: Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen; Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct; Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -2 In all other cases. - **1.** Let $S = (0, 1) \cup (1, 2) \cup (3, 4)$ and $T = \{0, 1, 2, 3\}$. Then which of the following statements is(are) true? - (A) There are infinitely many functions from S to T - (B) There are infinitely many strictly increasing functions from S to T - (C) The number of continuous functions from S to T is at most 120 - (D) Every continuous function from S to T is differentiable #### Answer (A, C, D) **2.** Let T_1 and T_2 be two distinct common tangents to the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$ and the parabola $P: y^2 = 12x$. Suppose that the tangent T_1 touches P and E at the points A_1 and A_2 , respectively and the tangent T_2 touches P and E at the points A_4 and A_3 , respectively. Then which of the following statements is(are) true? - (A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units - (B) The area of the quadrilateral $A_1A_2A_3A_4$ is 36 square units - (C) The tangents T_1 and T_2 meet the x-axis at the point (-3, 0) - (D) The tangents T_1 and T_2 meet the x-axis at the point (-6, 0) #### Answer (A, C) # Aakashians Shine as Champions in **JEE Advanced** - 3. Let $f: [0, 1] \to [0, 1]$ be the function defined by $f(x) = \frac{x^3}{3} x^2 + \frac{5}{9}x + \frac{17}{36}$. Consider the square region $S = [0, 1] \times [0, 1]$. Let $G = \{(x, y) \in S : y > f(x)\}$ be called the green region and $R = \{(x, y) \in S : y < f(x)\}$ be called the red region. Let $L_h = \{(x, h) \in S : x \in [0, 1]\}$ be the horizontal line drawn at a height $h \in [0, 1]$. Then which of the following statements is(are) true? - (A) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the green region below the line L_h - (B) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the red region below the line L_h - (C) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line L_h equals the area of the red region below the line L_h - (D) There exists an $h \in \left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line L_h equals the area of the green region below the line L_h Answer (B, C, D) #### SECTION 2 (Maximum Marks: 12) - This section contains FOUR (04) questions. - Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer. - For each question, choose the option corresponding to the correct answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 If **ONLY** the correct option is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases. **4.** Let $f:(0,1)\to\mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x\in\left[\frac{1}{n+1},\frac{1}{n}\right]$ where $n\in\mathbb{N}$. Let $g:(0,1)\to\mathbb{R}$ be a function such that $\int_{x^2}^x \sqrt{\frac{1-t}{t}} dt < g(x) < 2\sqrt{x}$ for all $x \in (0, 1)$. Then $\lim_{x \to 0} f(x)g(x)$ (A) Does NOT exist (B) Is equal to 1 (C) Is equal to 2 (D) Is equal to 3 Answer (C) 2020 **5.** Let Q be the cube with the set of vertices $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \in \{0,1\}\}$. Let F be the set of all twelve lines containing the diagonals of the six faces of the cube Q. Let S be the set of all four lines containing the main diagonals of the cube Q; for instance, the line passing through the vertices (0, 0, 0) and (1, 1, 1) is in S. For lines ℓ_1 and ℓ_2 , let $d(\ell_1, \ell_2)$ denote the shortest distance between them. Then the maximum value of $d(\ell_1, \ell_2)$, as ℓ_1 varies over F and ℓ_2 varies over S, is (A) $$\frac{1}{\sqrt{6}}$$ (B) $$\frac{1}{\sqrt{8}}$$ (C) $$\frac{1}{\sqrt{3}}$$ (D) $$\frac{1}{\sqrt{12}}$$ #### Answer (A) **6.** Let $X = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : \frac{x^2}{8} + \frac{y^2}{20} < 1 \text{ and } y^2 < 5x \right\}$. Three distinct point P, Q and R are randomly chosen from X. Then the probability that P, Q and R form a triangle whose area is a positive integer, is (A) $$\frac{71}{220}$$ (B) $$\frac{73}{220}$$ (C) $$\frac{79}{220}$$ (D) $$\frac{83}{220}$$ #### Answer (B) - 7. Let P be a point on the parabola $y^2 = 4ax$, where a > 0. The normal to the parabola at P meets the x-axis at a point Q. The area of the triangle PFQ, where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is - (A) (2, 3) (B) (1, 3) (C)(2,4) (D) (3, 4) #### Answer (A) #### **SECTION 3 (Maximum Marks: 24)** - This section contains SIX (06) questions. - The answer to each question is a NON-NEGATIVE INTEGER. - For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 If **ONLY** the correct integer is entered; Zero Marks : 0 In all other cases. 2020 **8.** Let $\tan^{-1}(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1 + \cos(2x)} = \sqrt{2} \tan^{-1}(\tan x) \text{ in the set } \left(-\frac{3\pi}{2}, -\frac{\pi}{2}\right) \cup \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \text{ is equal to}$ #### Answer (3) **9.** Let $n \ge 2$ be a natural number and $f: [0,1] \to \mathbb{R}$ be the function defined by $$f(x) = \begin{cases} n(1-2nx) & \text{if } 0 \le x \le \frac{1}{2n} \\ 2n(2nx-1) & \text{if } \frac{1}{2n} \le x \le \frac{3}{4n} \\ 4n(1-nx) & \text{if } \frac{3}{4n} \le x \le \frac{1}{n} \\ \frac{n}{n-1}(nx-1) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$ If n is such that the area of the region bounded by the curves x = 0, x = 1, y = 0 and y = f(x) is 4, then the maximum value of the function f is #### Answer (8) **10.** Let 75...57 denote the (r + 2) digit number where the first and the last digits are 7 and the remaining r digits are 5. Consider the sum S = 77 + 757 + 7557 + ... + 75...57. If $S = \frac{75...57 + m}{n}$, where m and n are natural numbers less than 3000, then the value of m + n is #### **Answer (1219)** **11.** Let $A = \left\{ \frac{1967 + 1686i\sin\theta}{7 - 3i\cos\theta} : \theta \in R \right\}$. If A contains exactly one positive integer n, then the value of n is #### **Answer (281)** **12.** Let *P* be the plane $\sqrt{3}x + 2y + 3z = 16$ and let $$S = \left\{ \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} : \alpha^2 + \beta^2 + \gamma^2 = 1 \text{ and the distance of } (\alpha, \beta, \gamma) \text{ from the plane } P \text{ is } \frac{7}{2} \right\}.$$ Let \vec{u} , \vec{v} and \vec{w} be three distinct vectors in S such that $|\vec{u} - \vec{v}| = |\vec{v} - \vec{w}| = |\vec{w} - \vec{u}|$. Let V be the volume of the parallelepiped determined by vectors \vec{u} , \vec{v} and \vec{w} . Then the value of $\frac{80}{\sqrt{3}}V$ is #### Answer (45) **13.** Let *a* and *b* be two nonzero real numbers. If the coefficient of x^5 in the expansion of $\left(ax^2 + \frac{70}{27bx}\right)^4$ is equal to the coefficient of x^{-5} in the expansion of $\left(ax - \frac{1}{bx^2}\right)^7$, then the value of 2*b* is #### Answer (3) #### SECTION 4 (Maximum Marks: 12) - This section contains FOUR (04) Matching List Sets. - Each set has **ONE** Multiple Choice Question. - Each set has TWO lists: List-I and List-II. - List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). - FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question. - Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases. **14.** Let α , β and γ be real numbers. Consider the following system of linear equations $$x + 2v + z = 7$$ $$x + \alpha z = 11$$ $$2x - 3y + \beta z = \gamma$$ Match each entry in List-I to the correct entries in List-II. | List-I | List-II | |-----------------------------------------------------------------------------------------------------------|---------------------------------------------------| | (P) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has | (1) a unique solution | | (Q) If $\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has | (2) no solution | | (R) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where α = 1 and $\gamma \neq$ 28, then the system has | (3) infinitely many solutions | | (S) If $\beta \neq \frac{1}{2}(7\alpha - 3)$ where $\alpha = 1$ and $\gamma = 28$, then the system has | (4) $x = 11$, $y = -2$ and $z = 0$ as a solution | | | (5) $x = -15$, $y = 4$ and $z = 0$ as a solution | 2020 The correct option is: (A) (P) $$\rightarrow$$ (3), (Q) \rightarrow (2), (R) \rightarrow (1), (S) \rightarrow (4) (B) (P) $$\rightarrow$$ (3), (Q) \rightarrow (2), (R) \rightarrow (5), (S) \rightarrow (4) (C) (P) $$\rightarrow$$ (2), (Q) \rightarrow (1), (R) \rightarrow (4), (S) \rightarrow (5) (D) (P) $$\rightarrow$$ (2), (Q) \rightarrow (1), (R) \rightarrow (1), (S) \rightarrow (3) #### Answer (A) 15. Consider the given data with frequency distribution xi 3 8 11 10 5 4 f_i 5 2 3 2 4 4 Match each entry in List-I to the correct entries in List-II. | | List-l | | List-II | |-----|----------------------------------------------------------|-----|---------| | (P) | The mean of the above data is | (1) | 2.5 | | (Q) | The median of the above data is | (2) | 5 | | (R) | The mean deviation about the mean of the above data is | (3) | 6 | | (S) | The mean deviation about the median of the above data is | (4) | 2.7 | | | | (5) | 2.4 | The correct option is (A) (P) $$\rightarrow$$ (3) (Q) \rightarrow (2) (R) \rightarrow (4) (S) \rightarrow (5) (B) (P) $$\rightarrow$$ (3) (Q) \rightarrow (2) (R) \rightarrow (1) (S) \rightarrow (5) (C) (P) $$\rightarrow$$ (2) (Q) \rightarrow (3) (R) \rightarrow (4) (S) \rightarrow (1) (D) (P) $$\rightarrow$$ (3) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (5) #### Answer (A) **16.** Let ℓ_1 and ℓ_2 be the lines $\vec{r}_1 = \lambda(\hat{i} + \hat{j} + \hat{k})$ and $\vec{r}_2 = (\hat{j} - \hat{k}) + \mu(\hat{i} + \hat{k})$, respectively, Let X be the set of all the planes H that contain the line ℓ_1 . For a plane H, let d(H) denote the smallest possible distance between the points of ℓ_2 and H. Let H_0 be a plane in X for which $d(H_0)$ is the maximum value of d(H) as H varies over all planes in X. 2020 Match each entry in List-I to the correct entries in List-II. | | List-l | | List-II | |-----|------------------------------------------------------------------------------------------------|-----|----------------------| | (P) | The value of $d(H_0)$ is | (1) | $\sqrt{3}$ | | (Q) | The distance of the point $(0, 1, 2)$ from H_0 is | (2) | $\frac{1}{\sqrt{3}}$ | | (R) | The distance of origin from H_0 is | (3) | 0 | | (S) | The distance of origin from the point of intersection of planes $y = z$, $x = 1$ and H_0 is | (4) | $\sqrt{2}$ | | | | (5) | $\frac{1}{\sqrt{2}}$ | The correct option is (A) (P) $$\rightarrow$$ (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1) (B) (P) $$\rightarrow$$ (5) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (1) (C) (P) $$\rightarrow$$ (2) (Q) \rightarrow (1) (R) \rightarrow (3) (S) \rightarrow (2) (D) (P) $$\rightarrow$$ (5) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (2) #### Answer (B) 17. Let z be a complex number satisfying $|z|^3 + 2z^2 + 4\overline{z} - 8 = 0$, where \overline{z} denotes the complex conjugate of z. Let the imaginary part of z be nonzero. Match each entry in List-I to the correct entries in List-II. | List-I | List-II | |------------------------------------------------|---------| | (P) $ z ^2$ is equal to | (1) 12 | | (Q) $ z-\overline{z} ^2$ is equal to | (2) 4 | | (R) $ z ^2 + z + \overline{z} ^2$ is equal to | (3) 8 | | (S) $ z+1 ^2$ is equal to | (4) 10 | | | (5) 7 | The correct option is (A) (P) $$\rightarrow$$ (1) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (4) (B) (P) $$\rightarrow$$ (2) (Q) \rightarrow (1) (R) \rightarrow (3) (S) \rightarrow (5) (C) (P) $$\rightarrow$$ (2) (Q) \rightarrow (4) (R) \rightarrow (5) (S) \rightarrow (1) (D) (P) $$\rightarrow$$ (2) (Q) \rightarrow (3) (R) \rightarrow (5) (S) \rightarrow (4) #### Answer (B) Aakashians Shine as Champions in **JEE Advanced** 2022