

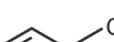
CHEMISTRY

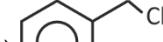
SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

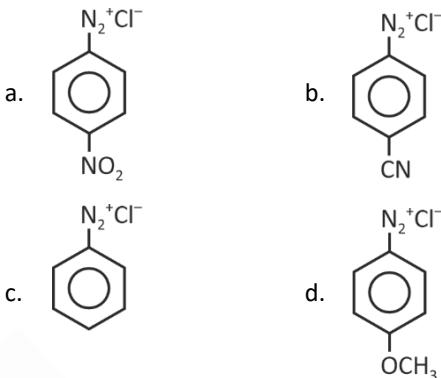
1. Match List-I with List-II.


List-I	List-II
A. Vinyl halide	(I)
B. Allyl halide	(II)
C. Benzyl halide	(III)
D. Aryl halide	(IV)


Select the correct option.

(1) A(II), B(I), C(III), D(IV) (2) A(I), B(II), C(III), D(IV)
 (3) A(I), B(II), C(IV), D(III) (4) A(II), B(I), C(IV), D(III)

Answer (2)

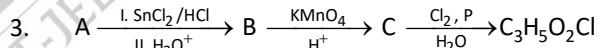

Sol. Vinyl halide \rightarrow

Allyl halide \rightarrow

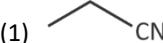
Benzyl halide \rightarrow

Aryl halide \rightarrow

2. The correct order of stability of following diazonium ions is

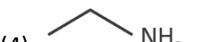


(1) a < b < c < d (2) a < b < d < c
 (3) c < d < b < a (4) d < c < b < a


Answer (1)

Sol. Stronger the electron withdrawing group attached at para position of $-N_2^+$ in diazonium ion, lesser is the stability and more electrophilicity.

Stability : (d) > (c) > (b) > (a)



Final product has one chiral centre. Structure of A is

(1)

(2)

(3)

(4)

Answer (1)

Our Problem *Solvers* shine bright in **JEE 2025**

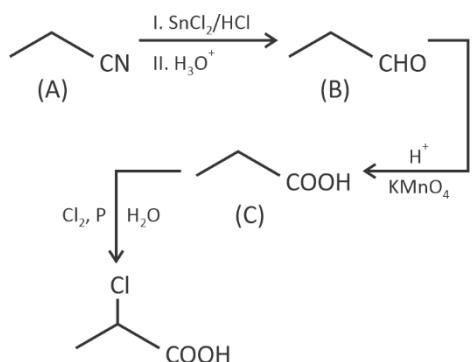
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6


KUSHAGRA
BAINGAHA
AIR 7

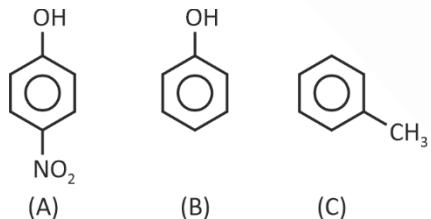
HARSSH
A GUPTA
AIR 15

Sol.

4. Which of following compound contains 3 unpaired electrons?

- V_2O_5
- $[\text{TiF}_6]^{3-}$
- $[\text{CoF}_6]^{4-}$
- $[\text{Fe}(\text{CN})_6]^{3-}$

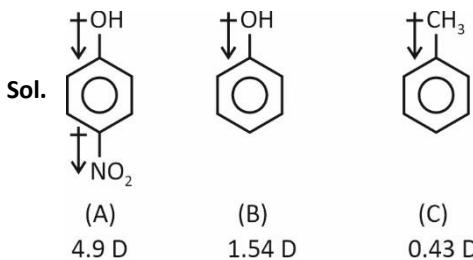
Answer (3)


Sol. V_2O_5 : 0 unpaired electrons

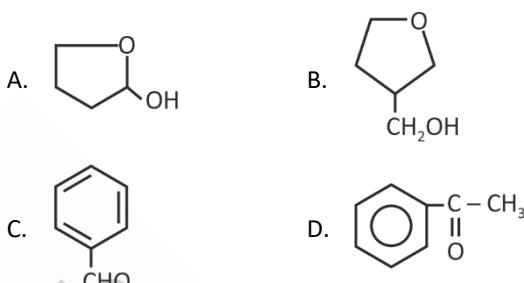
$[\text{TiF}_6]^{3-}$: Ti^{3+} : $[\text{Ar}] 4s^0 3d^1$: 1 unpaired e^-

$[\text{CoF}_6]^{4-}$: Co^{2+} : $[\text{Ar}] 4s^0 3d^7$: 3 unpaired e^-

$[\text{Fe}(\text{CN})_6]^{3-}$: Fe^{3+} : $[\text{Ar}] 4s^0 3d^5$: 1 unpaired e^-


5. Consider the following molecules.

The correct order of dipole moment is


- $A > B > C$
- $A > C > B$
- $B > A > C$
- $C > A > B$

Answer (1)

Dipole moment $A > B > C$

6. Which of the following compounds with give positive Tollen's reagent test?

(1) A, B and C only (2) A and C only
 (3) A, C and D only (4) B, C and D only

Answer (2)

Sol. Aldehydes and compounds with hemiacetal linkage gives positive Tollen's test. A and C give +ve T.R. test.

7. $\text{K}_2\text{Cr}_2\text{O}_7 + \text{I}^- + \text{H}^+ \rightarrow \text{I}_2$ (x = number of e^- exchanged per mol I_2)

$\text{K}_2\text{Cr}_2\text{O}_7 + \text{S}^{2-} \rightarrow \text{S}$ (y = number of e^- exchanged for mole of S)

$x + y$ is

(1) 12	(2) 9
(3) 4	(4) 6

Answer (3)

Our Problem Solvers shine bright in **JEE 2025**

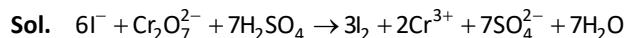
JEE (Advanced)

ADVAY
MAYANK
AIR 36

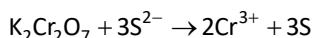
RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

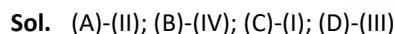


KUSHAGRA
BAINGAHA
AIR 7

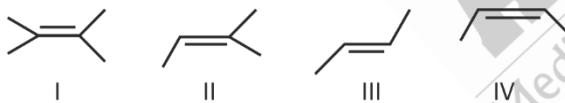


HARSSH
A GUPTA
AIR 15

$$x = 2$$


$$y = 2$$

8. Match the column


	Column-I		Column-II
(A)	IF_3	(I)	sp^3d^3 , Pentagonal bipyramidal
(B)	IF_5	(II)	sp^3d , T-shaped
(C)	IF_7	(III)	sp^3 , Tetrahedral
(D)	ClO_4^-	(IV)	sp^3d^2 , Square pyramidal

- (1) (A)-(I); (B)-(II); (C)-(III); (D)-(IV)
- (2) (A)-(II); (B)-(I); (C)-(IV); (D)-(III)
- (3) (A)-(II); (B)-(IV); (C)-(I); (D)-(III)
- (4) (A)-(II); (B)-(III); (C)-(IV); (D)-(I)

Answer (3)

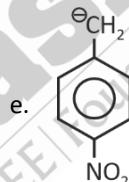
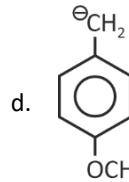
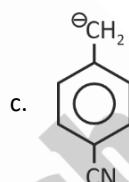
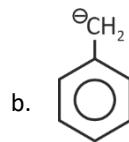
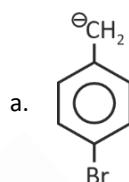
9. Consider the following alkene

The correct stability order of alkenes is

- (1) II > I > III > IV
- (2) I > II > IV > III
- (3) I > II > III > IV
- (4) III > I > II > IV

Answer (3)

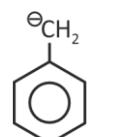
Sol. Alkene stability \propto no. of α -hydrogen






$$\text{I} \rightarrow 12 \alpha - \text{H}$$

$$\text{II} \rightarrow 9 \alpha \text{H}$$

$$\text{III \& IV} \rightarrow 6 \alpha \text{H}$$

\therefore Trans alkene is more stable than cis.


10. The correct order of stability of following species is

$$(1) \text{ e} > \text{c} > \text{a} > \text{b} > \text{d} \quad (2) \text{ d} > \text{c} > \text{b} > \text{a} > \text{e}$$

$$(3) \text{ e} > \text{a} > \text{c} > \text{b} > \text{d} \quad (4) \text{ e} > \text{a} > \text{b} > \text{c} > \text{d}$$

Answer (1)

-I Effect

-M Effect

+M Effect

-M Effect

-M of $-\text{NO}_2$ is stronger than that of $-\text{CN}$.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

old IITian IITian

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6

Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGANA
AIR 7

HARSSH
A. GUPTA
AIR 15

Telangana Topper
100th in Overall

old IITian IITian

15. Non-volatile solute A of mass 0.3 g (Molecular mass = 60 g/mol), and non-volatile solute B of mass 0.9 g (Molecular mass = 180 g/mol) are dissolved in 100 mL H₂O at 27°C. (Take i = 1; d_{H₂O} = 1 g / mL)

If K_b = 0.52 K·kg·mol⁻¹, then elevation of boiling point is

- (1) 0.52 K
- (2) 0.052 K
- (3) 0.026 K
- (4) 0.083 K

Answer (2)

Sol. mol of A = $\frac{0.3}{60} = \frac{1}{200}$, mol of B = $\frac{0.9}{180} = \frac{1}{200}$

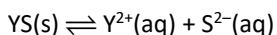
mass of solvent = 100 mL × (1 g/mL) = 100 g

$$\Delta T_f = K_f \times m = 0.52 \times \left(\frac{\frac{1}{200} + \frac{1}{200}}{0.1} \right) = 0.052 \text{ K}$$

16. A solution contains two group-IV cations, X²⁺ and Y²⁺, each at an initial concentration of 0.1 M. H₂S gas is passed through the solution to form a saturated solution. Given

K_{sp} of XS = $2 \times 10^{-27} \text{ M}^2$

K_{sp} of XS = $1 \times 10^{-27} \text{ M}^2$


What is the minimum concentration of sulphide in [S²⁻] required to begin precipitation of XS?

- (1) 2×10^{-26}
- (2) 10^{-26}
- (3) 3.2×10^{-14}
- (4) 0.1

Answer (1)

Sol. For precipitation

$$Q_{ip} > K_{sp}$$

$$[Y^{2+}] [S^{2-}] = K_{sp}(YS)$$

$$[Y^{2+}] = 0.1 \text{ M}$$

$$[S^{2-}] = \frac{K_{sp}(YS)}{0.1}$$

$$= \frac{2 \times 10^{-27}}{0.1}$$

$$= 2 \times 10^{-26} \text{ M}$$

17. What is the hybridisation and spin only magnetic moment of complex [Co(CO)₆]Cl₃?

- (1) d²sp³, 0 BM
- (2) sp³d², 4.90 BM
- (3) d²sp³, 4.90 BM
- (4) sp³d², 0 BM

Answer (1)

Sol. CO is SFL with Co³⁺

$$3d^6 \Rightarrow t_{2g}^6 e_g^0$$

$$\text{hybridisation} = d^2sp^3$$

$$\mu (\text{spin only}) = \sqrt{n(n+2)} \text{ BM}$$

$$n = 0$$

$$\mu \text{ spin only} = 0 \text{ BM}$$

18.

19.

20.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7

HARSSH
A GUPTA
AIR 15

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Two solutes A and B of 0.3 g and 0.9 g respectively (molar mass of A and B are 30 g/mol and 90 g/mol respectively) are dissolved in 100 mL water. (Take solutes to be non-electrolyte). Calculate osmotic pressure at 300 K (in atm)

Answer (5)

$$\text{Sol. } n_A = \frac{0.3}{30} = 10^{-2} \text{ mol}$$

$$n_B = \frac{0.9}{90} = 10^{-2} \text{ mol}$$

$$[A] = \frac{10^{-2}}{100} \times 1000 = 0.1 \text{ M}$$

$$[B] = \frac{10^{-2}}{100} \times 1000 = 0.1 \text{ M}$$

$$\pi = i CRT$$

$$\pi = 1 \times 0.2 \times 0.0821 \times 300 = 4.926 \text{ atm} \approx 5$$

22. Minimum energy transition of Balmer series (energy line having minimum energy) of H-atom has energy of L eV. If the value of minimum energy of Lyman series (energy line having minimum energy) of H-atom in terms of L is y, then the value of 10y is _____.

Answer (54)

$$\text{Sol. } (\Delta E_{\min})_{\text{Balmer}} = 13.6 \left(\frac{1}{4} - \frac{1}{9} \right) \text{ eV}$$

$$= 13.6 \frac{5}{36} = L \text{ eV}$$

$$(\Delta E_{\min})_{\text{Lyman}} = 13.6 \left(\frac{1}{1} - \frac{1}{4} \right) = 13.6 \frac{3}{4} \text{ eV}$$

$$= 13.6 \times \frac{5}{36} \times \frac{36}{5} \times \frac{3}{4}$$

$$5.4 \text{ L} = y$$

$$10y = 54$$

23. Find % of 'N' in 0.5 g organic compound which gives 34 mL N₂ (g) at 715 mm Hg pressure and 300 K.
(Aq. tension = 15 mm Hg)

$$\text{Report to nearest integer) } R = 0.0821 \frac{\text{Lit-atm}}{\text{K-mol}}$$

Answer (7)

$$\frac{715 - 15}{760} \times 34 \times 10^{-3}$$

$$\text{Sol. } \% \text{ N} = \frac{0.082 \times 300}{0.5} \times 28 \times 100 = 7.12\%$$

24. Find the value of $\log \left(\frac{k_{\text{catalysed}}}{k_{\text{uncatalysed}}} \right)$ at 300K if the change

in activation energy (ΔE_a) is 10 kJ/mol. ($R = 8 \text{ JK}^{-1} \text{ mol}^{-1}$)
($\ln x = 2.3 \log x$)

Answer (2)

$$\text{Sol. } k = A e^{-E_a/RT}$$

Ea_1 (catalysed)

Ea_2 (uncatalysed)

$$\frac{k_{\text{cat}}}{k_{\text{uncat}}} = e^{\frac{-Ea_1 + Ea_2}{RT}}$$

$$\log \frac{k_{\text{cat}}}{k_{\text{uncatalysed}}} = \frac{-Ea_1 + Ea_2}{2.303RT}$$

$$(Ea_2 - Ea_1) = 10000 \text{ J/mol}$$

$$\log \frac{K_{\text{cat}}}{K_{\text{uncatalysed}}} = \frac{10000}{300 \times 8 \times 2.3}$$

$$= \frac{4.167}{2.3}$$

$$= 1.81$$

$$\approx 2$$

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

Gold Medalist

SHREYAS
LOHIYA
AIR 6

Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7

Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15

Telangana Topper
100th in Overall