

Sol. $\Sigma x_i = 100$

$$\frac{\Sigma x_i^2}{10} - (10)^2 = 2$$

$$\Rightarrow \Sigma x_i^2 = 1020$$

$$\mu' = \frac{\Sigma(x_i) - \alpha + \beta}{10} \Rightarrow 100 - \alpha + \beta = 101$$

$$\Rightarrow \beta - \alpha = 1$$

$$\sigma' = \left(\frac{\Sigma x_i^2 - \alpha^2 + \beta^2}{10} \right) - \left(\frac{101}{10} \right)^2 = \frac{199}{100}$$

$$\Rightarrow \frac{1020 - \alpha^2 + \beta^2}{10} = \frac{199}{100} + \left(\frac{101}{100} \right)^2$$

$$= \frac{10400}{100} = 104$$

$$\Rightarrow 1020 - \alpha^2 + \beta^2 = 1040$$

$$\Rightarrow \beta^2 - \alpha^2 = 20$$

$$\beta - \alpha = 1$$

$$\Rightarrow (\beta + \alpha)(\beta - \alpha) = 20$$

$$\Rightarrow \alpha + \beta = 20$$

4. If $F(t) = \int \frac{1 - \sin(\ln t)}{1 - \cos(\ln t)} dt$ and $F(e^{\pi/2}) = -e^{\pi/2}$ then

$F(e^{\pi/4})$ is

(1) $(-1 - \sqrt{2})e^{\pi/4}$

(2) $(1 - \sqrt{2})e^{\pi/4}$

(3) $(1 + \sqrt{2})e^{\pi/4}$

(4) $(-2 - \sqrt{2})e^{\pi/4}$

Answer (1)

Sol. $\int \frac{1 - \sin(\ln t)}{1 - \cos(\ln t)} dt$

Let $\ln t = x$

$$t = e^x$$

$$dt = e^x dx$$

$$\int e^x \frac{(1 - \sin x)}{1 - \cos x} dt$$

$$\Rightarrow \int e^x \left(\frac{1 - 2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin^2 \frac{x}{2}} \right) dx$$

$$\Rightarrow \int e^x \left(\frac{1}{2} - \csc^2 \frac{x}{2} - \cot \frac{x}{2} \right) dx$$

$$\Rightarrow \int e^x \left[\frac{-\cot \frac{x}{2}}{f(x)} + \frac{1}{2} \csc^2 \frac{x}{2} \right] dx$$

$$\Rightarrow -e^x \cot \frac{x}{2} + c$$

$$f(t) = -t \cot \left(\frac{\ln t}{2} \right) + c$$

$$f(e^{\pi/2}) = -e^{\pi/2} + c = -e^{\pi/2}$$

$$\Rightarrow c = 0$$

$$f(e^{\pi/4}) = -e^{\pi/4} \cot \left(\frac{\pi}{8} \right)$$

$$= -e^{\pi/4} [\sqrt{2} + 1]$$

5. Consider a sequence 729, 81, 9, 1,

Let P_n = product of first n terms of the given sequence

$$\text{and } \sum_{n=1}^{40} (P_n)^{\frac{1}{n}} = \frac{3^\alpha - 1}{2 \times 3^\beta}.$$

Then the value of $\alpha + \beta$ is

(1) 73 (2) 75

(3) 76 (4) 81

Answer (1)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY MAYANK
AIR 36

RUJUL GARG
AIR 41

ARUSH ANAND
AIR 64

SHREYAS LOHIA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSH A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)

Sol. $f(x) = e^x + \ln \frac{(\sec x + \tan x) - x}{\tan x - x}$

since $\lim_{x \rightarrow 0} \frac{\ln(\sec x + \tan x) - x}{\tan x - x} \quad \lim_{x \rightarrow 0} \frac{\sec x - 1}{\sec^2 x - 1} = \frac{1}{2}$

Using L'Hospital

$$\Rightarrow \lim_{x \rightarrow 0} f(x) = f(0) = 1 + \frac{1}{2} = \frac{3}{2}$$

15. $E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$E_2: \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$

Let eccentricity of both E_1 and E_2 be $\frac{4}{5}$, $2l_1^2 = 9l_2$

where l_1 and l_2 are the length of latus rectum of E_1 and E_2 respectively. Distance between the foci of E_1 be 8.

Then distance between foci of ellipse E_2 is

(1) $\frac{32}{5}$

(2) $\frac{16}{5}$

(3) $\frac{8}{5}$

(4) $\frac{4}{5}$

Answer (1)

Sol. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$l_1^2 = 1 - \frac{b^2}{a^2}$$

$$\frac{16}{25} = 1 - \frac{b^2}{a^2}$$

$$\frac{b^2}{a^2} = \frac{9}{25} \dots (1)$$

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$$

$$l_2^2 = 1 - \frac{B^2}{A^2}$$

$$\frac{16}{25} = 1 - \frac{B^2}{A^2}$$

$$\frac{B^2}{A^2} = \frac{9}{25} \dots (2)$$

Now $2l_1^2 = 9l_2$

$$2 \left(\frac{2b^2}{a} \right)^2 = 9 \left(\frac{2B^2}{A} \right)$$

$$8 \frac{b^4}{a^2} = 18 \frac{B^2}{A}$$

$$\frac{b^4}{a^2} = \frac{9}{4} \frac{B^2}{A}$$

Also given: $2ae = 8$

$$2 \times \frac{4}{5} a = 8$$

$a = 5$

$\Rightarrow b = 3$

Now $\frac{81}{25} = \frac{9}{4} \frac{B^2}{A}$

$$\frac{36}{25} A = B^2$$

Sub in (2)

$$\frac{36}{25} \frac{A}{A^2} = \frac{9}{25}$$

$A = 4$

Now $2Ae$

$$= 2 \times 4 \times \frac{4}{5}$$

$$= \frac{32}{5}$$

16. Find the number of numbers greater than 5000 and less than 9000, formed by using numbers 0, 1, 2, 5, 9 with repetition allowed and divisible by 3.

(1) 31 (2) 42

(3) 48 (4) 52

Answer (2)

Sol. As number is more than 5000 and less than 9000 then thousand place must be 5.

5	a	b	c
---	-----	-----	-----

For $(a, b, c) = (0, 0, 1) \rightarrow 3$ ways

$(0, 1, 9) \rightarrow 6$ ways

$(0, 2, 5) \rightarrow 6$ ways

$(0, 2, 2) \rightarrow 3$ ways

$(0, 5, 5) \rightarrow 3$ ways

$(1, 1, 2) \rightarrow 3$ ways

$(1, 1, 5) \rightarrow 3$ ways

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

$$\begin{aligned}
 (1, 9, 9) &\rightarrow 3 \text{ ways} \\
 (2, 2, 9) &\rightarrow 3 \text{ ways} \\
 (2, 5, 9) &\rightarrow 6 \text{ ways} \\
 (5, 5, 9) &\rightarrow \underline{3 \text{ ways}}
 \end{aligned}$$

42

∴ Total 42 numbers are possible.

17.

18.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. If $S = \frac{1}{25!} + \frac{1}{23!3!} + \frac{1}{21!5!} + \dots$ upto 13 terms. Then

$$13S = \frac{2^\alpha}{\beta!}, \text{ then } \alpha + \beta \text{ is}$$

Answer (49)

$$\text{Sol. } \frac{1}{25!} + \frac{1}{23!3!} + \frac{1}{21!5!} + \dots \text{ till 13 term} = S$$

$$26!S = \frac{26!}{25!1!} + \frac{26!}{23!3!} + \frac{26!}{21!5!} + \dots$$

$$= {}^{26}C_1 + {}^{26}C_3 + {}^{26}C_5 + \dots + {}^{26}C_{25}$$

$$26!S = 2^{25}$$

$$S = \frac{2^{25}}{26!}$$

$$13S = 13 \times \frac{2^{25}}{26 \times 25!}$$

$$= \frac{2^{24}}{25!} \Rightarrow \alpha = 24 \quad \beta = 25$$

$$\alpha + \beta = 49$$

22.

23.

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

JEE (MAIN)