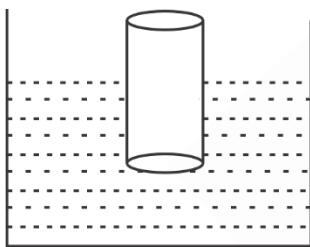


8. Match the two lists given below .


	List-I		List-II
a.	Magnetic flux	1.	$M^1 L^2 T^{-2} A^{-2}$
b.	Magnetic permeability	2.	$M^1 L^2 T^{-2} A^{-1}$
c.	Magnetic induction	3.	$M^1 L^1 T^{-2} A^{-2}$
d.	Self-induction	4.	$M^1 L^0 T^{-2} A^{-1}$

(1) a-2, b-3, c-4, d-1 (2) a-3, b-2, c-1, d-4
 (3) a-4, b-3, c-1, d-2 (4) a-1, b-2, c-3, d-4

Answer (1)

Sol. Theoretical

9. A cylinder of mas m , length l and area of cross section A is in equilibrium in liquid of density ρ . Find time period of small vertical oscillations.

(1) $2\pi\sqrt{\frac{mA}{\rho g}}$ (2) $2\pi\sqrt{\frac{mg}{\rho A}}$
 (3) $2\pi\sqrt{\frac{m}{\rho A^2 g}}$ (4) $2\pi\sqrt{\frac{m}{\rho Ag}}$

Answer (4)

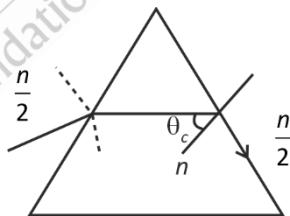
Sol. $F = (\rho Ag)x$

$$T = 2\pi\sqrt{\frac{m}{\rho Ag}}$$

10. A dipole is placed in uniform magnetic field $B = 800$ gauss at an angle 30° then it experiences the torque of 16×10^{-3} N-m. Find the work done in slowly moving the dipole from stable equilibrium to unstable equilibrium.

(1) 12.8×10^{-3} J (2) 5×10^{-3} J
 (3) 24.5×10^{-3} J (4) 7.6×10^{-3} J

Answer (1)


Sol. $|\tau| = |\vec{M} \times \vec{B}| = \frac{|\vec{M} \times \vec{B}|}{2}$

$$\Rightarrow |\vec{M}| = \frac{2 \times 16 \times 10^{-3}}{800 \times 10^{-4}} = \frac{4}{10}$$

$$\text{So } \Delta W = 2|\vec{M}||\vec{B}| = \frac{2 \times 4}{10} \times 800 \times 10^{-4}$$

$$\Rightarrow \Delta W = 64 \text{ mJ}$$

11. A light ray incident on the prism such that deviation is minimum and angle of incidence on 2nd surface is critical angle. Find prism angle.

(1) 90° (2) 60°
 (3) 105° (4) 74°

Answer (2)

Sol. $\sin \theta_c = \frac{1}{2}$

$$\theta_c = 30^\circ$$

$$r_1 = r_2 = 30^\circ$$

$$A = 30 + 30 = 60^\circ$$

Our Problem Solvers shine bright in **JEE 2025**

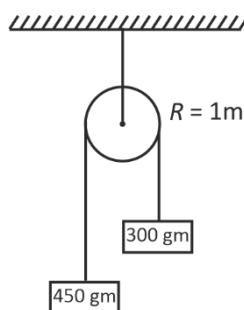
JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6


KUSHAGRA
BAINGAHA
AIR 7

HARSSH
A GUPTA
AIR 15

12. When system is released from rest the heavier mass goes 81 cm in 9 sec, find rotational inertia. ($g = 10 \text{ m/s}^2$)

(1) 74.25 kg-m^2
 (2) 100.25 kg-m^2
 (3) 50.25 kg-m^2
 (4) 25.25 kg-m^2

Answer (1)

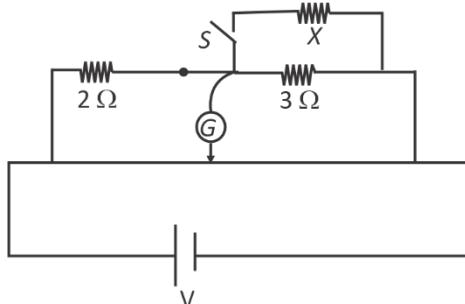
$$\text{Sol. } s = \frac{1}{2}at^2$$

$$0.81 = \frac{1}{2}a \times 9^2$$

$$a = 0.02 \text{ m/s}^2$$

$$a = \frac{(0.45 - 0.3) \times 10}{0.45 + 0.3 + \frac{I}{R^2}}$$

$$0.02 = \frac{0.15 \times 10}{0.75 + \frac{I}{R^2}}$$


$$0.75 + \frac{I}{R^2} = 75$$

$$\frac{I}{R^2} = 74.25$$

$$I = 74.25 \times 1^2$$

$$I = 74.25 \text{ kg-m}^2$$

13. In meter bridge diagram given below, if S is closed, null point shifts by 25 cm. Find value of resistance X . (in cm).

(1) 4.1
 (2) 1.68
 (3) 6.28
 (4) 5.4

Answer (2)

$$\text{Sol. } \Rightarrow \frac{2}{3} = \frac{I}{100 - I} \Rightarrow I = 40 \text{ cm}$$

$$\text{Now } \frac{2(3+x)}{3x} = \frac{65}{35} = \frac{13}{7}$$

$$\Rightarrow 42 + 14x = 39x$$

$$\Rightarrow 42 = 25x \Rightarrow x = 1.68 \Omega$$

14. **Statement-1** : Binding energy per nucleon always increase with mass number.

Statement-2 : Binding energy per nucleon for smaller mass number always performs nucleon fusion.

(1) Statement-1, true	(2) Statement-1, true
Statement-2, false	Statement-2, true
(3) Statement-1, false	(4) Statement-1, false
Statement-2, true	Statement-2, false

Answer (3)

Sol. Statement-1 False \rightarrow Binding energy per nucleons does not always increase with mass number.

Statement-2 : True \rightarrow Light nuclei with low binding energy per nucleon generally undergo nucleon fusion to become stable by increasing their binding energy per nucleons towards the iron-56 peak.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

15. Velocity of electron in n^{th} shell of a hydrogen like atom is 3×10^5 m/s and velocity of electron in m^{th} shell of that atom is 2.5×10^5 m/s. Find ratio of radius of m^{th} shell to n^{th} shell.

(1) $\frac{25}{40}$

(2) $\frac{25}{36}$

(3) $\frac{36}{25}$

(4) $\frac{36}{35}$

Answer (3)

Sol. $V \propto \frac{z}{n}$ and $r \propto \frac{n^2}{z}$

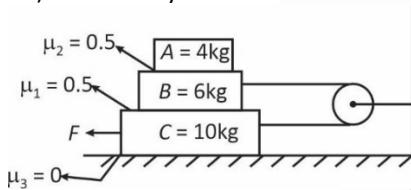
$$\frac{V_n}{V_m} = \frac{m}{n} = \frac{6}{5}$$

$$\frac{r_m}{r_n} = \frac{m^2}{n^2} = \frac{36}{25}$$

16.

17.

18.


19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. For the given arrangement find the value of F (in Newton) so that body C moves with constant velocity.

Answer (100)

Sol. $fr_{(\text{max})} = \frac{1}{2} \times 10 \times 10 = 50 \text{ N}$

Since B also moves with uniform velocity

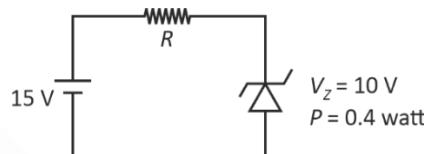
So, friction between A & B is zero.

Now, $F - T - 50 = 0$

$\Rightarrow F = 50 + T \dots (1)$

Also, $T - 50 = 0 \quad T = 50 \text{ N}$

So, $F = 100 \text{ N}$


22. For a microscope focal length of objective is 2 cm and focal length of eyepiece is 4 cm. Tube length is $L = 10$ cm. Magnification for normal adjustment is 5^x . Find the value of x .

Answer (2)

Sol. $M = \frac{1}{f_o} \cdot \frac{D}{f_e}$

$$M = \frac{10}{2} \cdot \frac{25}{5} = 25 = (5)^2$$

23. For the given circuit the breakdown voltage of Zener diode is $V_Z = 10$ volts and it can with-stand the power dissipation of 0.4 watt. Find the value of resistance R (in Ω)

Answer (125)

Sol. Current in Zener diode is

$$I_{(Z)} = \frac{4}{10 \times 10} = \frac{4}{100} \text{ Ampere}$$

$$\text{So, } R = \frac{(15 - 10)}{4} \times 100 = 125 \Omega$$

24. If potential varies as distance r as $v(r) = ar^3 + b$. Total magnitude of charge Q inclosed within a sphere of unit radius is $Q = \alpha(\pi a \epsilon_0)$. Find the value of α .

Answer (12)

Sol. $v(r) = ar^3 + b$

$$\Rightarrow E(r) = \frac{-dv}{dr} = -3ar^2$$

$$\text{So } \int E \cdot ds = \frac{|q_{\text{in}}|}{\epsilon_0}$$

$$\Rightarrow 3ar^2 \cdot 4\pi r^2 = \frac{|q_{\text{in}}|}{\epsilon_0}$$

$$\Rightarrow |q_{\text{in}}| = 12\pi a \epsilon_0 (1)^4 = 12\pi a \epsilon_0$$

$$\text{So, } \alpha = 12$$

25

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

SHREYAS
LOHIYA
AIR 6

KUSHAGRA
BAINGAHA
AIR 7

HARSSH
A GUPTA
AIR 15

JEE (MAIN)