

Sol. Lowest Lyman $\frac{1}{\lambda_1} = RZ^2 \{1\}$

$$\text{Highest Paschen } \frac{1}{\lambda_2} = RZ^2 \left(\frac{1}{9} - \frac{1}{16} \right)$$

$$\frac{\lambda_2}{\lambda_1} = \frac{144}{7}$$

$$\lambda_2 = \frac{144}{7} \times 9 = 1872$$

13. **Statement-1:** Kinetic energy of system = $\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 \dots \frac{1}{2}m_nv_n^2$

Statement-2: Kinetic energy of system = Kinetic energy of center of mass + kinetic energy with respect to center of mass

(1) Statement I is true
Statement II is true
(2) Statement I is true
Statement II is false
(3) Statement I is false
Statement II is true
(4) Statement I is false
Statement II is false

Answer (1)

Sol. $KE = KE_0 + KE$

14. Find the percentage change in height risen by liquid if density of fluid, radius of capillary and surface tension of liquid are decreased by 1%. Assume contact angle doesn't change and capillary is of sufficient length.

(1) +1% (2) -1%
(3) +3% (4) -3%

Answer (1)

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

17. For the given statements below mark the correct option.

Statement-I: Work done by a conservative force f , from

$$\vec{r}_1 \text{ to } \vec{r}_2 \text{ is given by } W = - \int_{\vec{r}_1}^{\vec{r}_2} \vec{f} \cdot d\vec{r}.$$

Statement-II: Work done by conservative force is path dependent.

- (1) Statement-I and statement-II is true
- (2) Statement-I is true and statement-II is false
- (3) Statement-I is false and statement-II is true
- (4) Statement-I and statement-II is false

Answer (4)

Sol. $W = \int_{\vec{r}_1}^{\vec{r}_2} \vec{f} \cdot d\vec{r}$, is path independent.

18. Electromagnetic wave with intensity $I = 4 \times 10^{14}$ watt/m² is propagating in free space. Find the amplitude of magnetic field B_0 .

(Use $c = 3 \times 10^8$ m/s, $\epsilon_0 = 8.85 \times 10^{-12}$ C²/N.m²)

- (1) 1.83 Tesla
- (2) 0.5 Tesla
- (3) 4.5 Tesla
- (4) 1 Tesla

Answer (1)

Sol. $E_0 = CB_0$

$$\text{And } I = \frac{1}{2} \epsilon_0 E_0^2 \times c$$

$$\Rightarrow I = \frac{1}{2} \epsilon_0 c^3 \cdot B_0^2$$

$$\Rightarrow \frac{2I}{\epsilon_0 c^3} = B_0^2 = 3.35$$

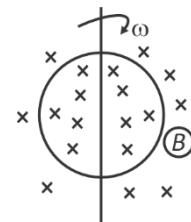
$$\Rightarrow B_0 = 1.83 \text{ Tesla}$$

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.


21. Three identical liquid drops each carrying same charges coalesce to form single drop. Ratio of potential of large drop and single smaller drop is $3^{N/3}$ then N is

Answer (2)

$$\text{Sol. } \frac{4}{3} \pi r^3 \cdot 3 = \frac{4}{3} \pi R^3 \Rightarrow R = 3^{1/3} r$$

$$V = \frac{q}{4\pi\epsilon_0 r} \quad V = \frac{3q}{4\pi\epsilon_0 R} \quad V = \frac{3}{3^{1/3}} = 3^{2/3}$$

22. A circular coil is rotating in magnetic field of magnitude 0.25 T with angular speed 6 rpm about its diameter. At $t = 0$ coil's configuration is given as shown. If induced emf after coil rotated by angle 30° is 1.6 mV. Find radius of the coil (in cm). ($\pi^2 = 10$)

Answer (8)

Sol. $\sum = BA\omega \sin(\text{cost})$

$$B\pi R^2 \cdot \frac{6 \times 2\pi}{60} \cdot \frac{1}{2} = 16 \times 10^{-4}$$

$$R^2 = \frac{16 \times 10^{-4}}{0.25}$$

$$R = 8 \text{ cm}$$

23. A metallic conductor of length 2m and cross-sectional area 0.2 mm² carries steady current of 1.2A when a potential difference of 2V is applied across it. ($e = 1.6 \times 10^{-19}$, charge density = 7.5×10^{28} m⁻³)

Then the mobility of charge carrier is $x \times 10^{-4}$ SI units. Find x

Answer (5)

$$\text{Sol. } \mu = \frac{v_d}{E} = \frac{Il}{neA(EI)} = \frac{Il}{neAV} \\ = 5 \times 10^{-4} \text{ m}^2 \text{V}^{-1} \text{S}^{-1}$$

24.

25.

Our Problem *Solvers* shine bright in **JEE 2025**

JEE (Advanced)

ADVAY
MAYANK
AIR 36

RUJUL
GARG
AIR 41

ARUSH
ANAND
AIR 64

and many more...

JEE (MAIN)

SHREYAS
LOHIYA
AIR 6
Uttar Pradesh Topper
100th in Overall

KUSHAGRA
BAINGAHA
AIR 7
Uttar Pradesh Topper
100th in Overall

HARSSH
A GUPTA
AIR 15
Telangana Topper
100th in Overall

